{"title":"用于物联网、WLAN和5G应用的基于SIW腔的频率可重构天线","authors":"Babu Lal Sharma, Dhirendra Mathur, M. Sharma","doi":"10.1515/freq-2022-0173","DOIUrl":null,"url":null,"abstract":"Abstract In order to minimize antenna complexity and improve gain, a new compact size low profile SIW-cavity-based frequency reconfigurable antenna is presented for IoT, WLAN, and 5G applications. The proposed antenna miniaturization is achieved by incorporating SIW cavity using metallic vias. The reconfiguration mechanism is accomplished by etching a circular ring slot and a C-shaped slot at the top metallic layer of the substrate. The frequency switching mechanism from low to high state is provided by eight PIN diodes. The diodes are placed in a symmetrical order along circular ring slot. All the diodes are switched on simultaneously to achieve low-frequency state operation. However, the off state of the diodes shifts antenna operation from low to high-frequency state. The antenna is fabricated on a small size substrate with an overall electrical size of (0.4λ* 0.4λ).The proposed antenna resonates at frequencies 2.4, and 3.45 GHz with 220 MHz and 470 MHz bandwidth respectively in low-frequency state. In high-frequency state, the antenna resonates at 5.8 GHz with 200 MHz bandwidth. The proposed antenna achieves peak gain of 6.3, 6.7, and 5.9 dBi in the three bands, and stable radiation patterns are attained in the working frequency band of the antenna.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"413 - 424"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SIW-cavity based frequency reconfigurable antenna for IoT, WLAN, and 5G applications\",\"authors\":\"Babu Lal Sharma, Dhirendra Mathur, M. Sharma\",\"doi\":\"10.1515/freq-2022-0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to minimize antenna complexity and improve gain, a new compact size low profile SIW-cavity-based frequency reconfigurable antenna is presented for IoT, WLAN, and 5G applications. The proposed antenna miniaturization is achieved by incorporating SIW cavity using metallic vias. The reconfiguration mechanism is accomplished by etching a circular ring slot and a C-shaped slot at the top metallic layer of the substrate. The frequency switching mechanism from low to high state is provided by eight PIN diodes. The diodes are placed in a symmetrical order along circular ring slot. All the diodes are switched on simultaneously to achieve low-frequency state operation. However, the off state of the diodes shifts antenna operation from low to high-frequency state. The antenna is fabricated on a small size substrate with an overall electrical size of (0.4λ* 0.4λ).The proposed antenna resonates at frequencies 2.4, and 3.45 GHz with 220 MHz and 470 MHz bandwidth respectively in low-frequency state. In high-frequency state, the antenna resonates at 5.8 GHz with 200 MHz bandwidth. The proposed antenna achieves peak gain of 6.3, 6.7, and 5.9 dBi in the three bands, and stable radiation patterns are attained in the working frequency band of the antenna.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"77 1\",\"pages\":\"413 - 424\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2022-0173\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SIW-cavity based frequency reconfigurable antenna for IoT, WLAN, and 5G applications
Abstract In order to minimize antenna complexity and improve gain, a new compact size low profile SIW-cavity-based frequency reconfigurable antenna is presented for IoT, WLAN, and 5G applications. The proposed antenna miniaturization is achieved by incorporating SIW cavity using metallic vias. The reconfiguration mechanism is accomplished by etching a circular ring slot and a C-shaped slot at the top metallic layer of the substrate. The frequency switching mechanism from low to high state is provided by eight PIN diodes. The diodes are placed in a symmetrical order along circular ring slot. All the diodes are switched on simultaneously to achieve low-frequency state operation. However, the off state of the diodes shifts antenna operation from low to high-frequency state. The antenna is fabricated on a small size substrate with an overall electrical size of (0.4λ* 0.4λ).The proposed antenna resonates at frequencies 2.4, and 3.45 GHz with 220 MHz and 470 MHz bandwidth respectively in low-frequency state. In high-frequency state, the antenna resonates at 5.8 GHz with 200 MHz bandwidth. The proposed antenna achieves peak gain of 6.3, 6.7, and 5.9 dBi in the three bands, and stable radiation patterns are attained in the working frequency band of the antenna.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.