{"title":"El Teniente铜矿不同巷道几何形状岩石支护系统设计中岩爆能量容量评价","authors":"F. Villalobos, S. Villalobos, L. Aguilera","doi":"10.17159/2411-9717/1249/2022","DOIUrl":null,"url":null,"abstract":"Rockburst events have been a serious problem for many years in many mines worldwide, and in particular at El Teniente mine in Chile. El Teniente is the largest copper mine in the world, located in the Andes Cordillera where high stress levels are present due to intensing mining activity in addition to complex geology. Consequently, the study and management of the rockburst threat are necessary. In this work, the case of the Diablo Regimiento (DR) mine within El Teniente is studied. The energy capacity of dynamic support systems is determined for different tunnel geometries based on two kinetic methodologies, using data from DR. Initially, rockburst potential is determined by means of a stress analysis around different tunnel geometries through the boundary elements method. In the first methodology a yielding zone (YZ) is estimated for each excavation geometry using the finite element method FEM. The second methodology involves the definition and determination of a critical strain energy (SE) around each excavation geometry using a FEM numerical analysis. In both cases, peak particle velocity PPV is estimated by a scaling law, which is subsequently adjusted due to tunnel amplification effects. According to the results, and knowing the working energy capacity applied in DR mine, it was found that the values of energy capacity for the rock dynamic supports were better estimated by the YZ-PPV approach than by the SE approach.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of rockburst energy capacity for the design of rock support systems for different tunnel geometries at El Teniente copper mine\",\"authors\":\"F. Villalobos, S. Villalobos, L. Aguilera\",\"doi\":\"10.17159/2411-9717/1249/2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rockburst events have been a serious problem for many years in many mines worldwide, and in particular at El Teniente mine in Chile. El Teniente is the largest copper mine in the world, located in the Andes Cordillera where high stress levels are present due to intensing mining activity in addition to complex geology. Consequently, the study and management of the rockburst threat are necessary. In this work, the case of the Diablo Regimiento (DR) mine within El Teniente is studied. The energy capacity of dynamic support systems is determined for different tunnel geometries based on two kinetic methodologies, using data from DR. Initially, rockburst potential is determined by means of a stress analysis around different tunnel geometries through the boundary elements method. In the first methodology a yielding zone (YZ) is estimated for each excavation geometry using the finite element method FEM. The second methodology involves the definition and determination of a critical strain energy (SE) around each excavation geometry using a FEM numerical analysis. In both cases, peak particle velocity PPV is estimated by a scaling law, which is subsequently adjusted due to tunnel amplification effects. According to the results, and knowing the working energy capacity applied in DR mine, it was found that the values of energy capacity for the rock dynamic supports were better estimated by the YZ-PPV approach than by the SE approach.\",\"PeriodicalId\":17492,\"journal\":{\"name\":\"Journal of The South African Institute of Mining and Metallurgy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The South African Institute of Mining and Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17159/2411-9717/1249/2022\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/1249/2022","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Evaluation of rockburst energy capacity for the design of rock support systems for different tunnel geometries at El Teniente copper mine
Rockburst events have been a serious problem for many years in many mines worldwide, and in particular at El Teniente mine in Chile. El Teniente is the largest copper mine in the world, located in the Andes Cordillera where high stress levels are present due to intensing mining activity in addition to complex geology. Consequently, the study and management of the rockburst threat are necessary. In this work, the case of the Diablo Regimiento (DR) mine within El Teniente is studied. The energy capacity of dynamic support systems is determined for different tunnel geometries based on two kinetic methodologies, using data from DR. Initially, rockburst potential is determined by means of a stress analysis around different tunnel geometries through the boundary elements method. In the first methodology a yielding zone (YZ) is estimated for each excavation geometry using the finite element method FEM. The second methodology involves the definition and determination of a critical strain energy (SE) around each excavation geometry using a FEM numerical analysis. In both cases, peak particle velocity PPV is estimated by a scaling law, which is subsequently adjusted due to tunnel amplification effects. According to the results, and knowing the working energy capacity applied in DR mine, it was found that the values of energy capacity for the rock dynamic supports were better estimated by the YZ-PPV approach than by the SE approach.
期刊介绍:
The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.