Prasad P. Devarshi, Aarin D Jones, E. Taylor, B. Stefańska, T. Henagan
{"title":"槲皮素和富含槲皮素的红洋葱提取物改变Pgc-1α启动子甲基化和剪接变异表达","authors":"Prasad P. Devarshi, Aarin D Jones, E. Taylor, B. Stefańska, T. Henagan","doi":"10.1155/2017/3235693","DOIUrl":null,"url":null,"abstract":"Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and function. Here, mice were fed a low fat (LF), high fat (HF), high fat plus quercetin (HF + Q), or high fat plus red onion extract (HF + RO) diet for 9 wks and skeletal muscle Pgc-1α isoform expression and DNA methylation were determined. Quantification of various Pgc-1α isoforms, including isoforms Pgc-1α-a, Pgc-1α-b, Pgc-1α-c, Pgc-1α4, total NT-Pgc-1α, and FL-Pgc-1α, showed that only total NT-Pgc-1α expression was increased in LF, HF + Q, and HF + RO compared to HF. Furthermore, Q supplementation decreased Pgc-1α-a expression compared to LF and HF, and ROE decreased Pgc-1α-a expression compared to LF. FL-Pgc-1α was decreased in HF + Q and HF + RO compared to LF and HF. HF exhibited hypermethylation at the −260 nucleotide (nt) in the Pgc-1α promoter. Q and ROE prevented HFD-induced hypermethylation. −260 nt methylation levels were associated with NT-Pgc-1α expression only. Pgc-1α isoform expression may be epigenetically regulated by Q and ROE through DNA methylation.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3235693","citationCount":"18","resultStr":"{\"title\":\"Quercetin and Quercetin-Rich Red Onion Extract Alter Pgc-1α Promoter Methylation and Splice Variant Expression\",\"authors\":\"Prasad P. Devarshi, Aarin D Jones, E. Taylor, B. Stefańska, T. Henagan\",\"doi\":\"10.1155/2017/3235693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and function. Here, mice were fed a low fat (LF), high fat (HF), high fat plus quercetin (HF + Q), or high fat plus red onion extract (HF + RO) diet for 9 wks and skeletal muscle Pgc-1α isoform expression and DNA methylation were determined. Quantification of various Pgc-1α isoforms, including isoforms Pgc-1α-a, Pgc-1α-b, Pgc-1α-c, Pgc-1α4, total NT-Pgc-1α, and FL-Pgc-1α, showed that only total NT-Pgc-1α expression was increased in LF, HF + Q, and HF + RO compared to HF. Furthermore, Q supplementation decreased Pgc-1α-a expression compared to LF and HF, and ROE decreased Pgc-1α-a expression compared to LF. FL-Pgc-1α was decreased in HF + Q and HF + RO compared to LF and HF. HF exhibited hypermethylation at the −260 nucleotide (nt) in the Pgc-1α promoter. Q and ROE prevented HFD-induced hypermethylation. −260 nt methylation levels were associated with NT-Pgc-1α expression only. Pgc-1α isoform expression may be epigenetically regulated by Q and ROE through DNA methylation.\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/3235693\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/3235693\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2017/3235693","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Quercetin and Quercetin-Rich Red Onion Extract Alter Pgc-1α Promoter Methylation and Splice Variant Expression
Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and function. Here, mice were fed a low fat (LF), high fat (HF), high fat plus quercetin (HF + Q), or high fat plus red onion extract (HF + RO) diet for 9 wks and skeletal muscle Pgc-1α isoform expression and DNA methylation were determined. Quantification of various Pgc-1α isoforms, including isoforms Pgc-1α-a, Pgc-1α-b, Pgc-1α-c, Pgc-1α4, total NT-Pgc-1α, and FL-Pgc-1α, showed that only total NT-Pgc-1α expression was increased in LF, HF + Q, and HF + RO compared to HF. Furthermore, Q supplementation decreased Pgc-1α-a expression compared to LF and HF, and ROE decreased Pgc-1α-a expression compared to LF. FL-Pgc-1α was decreased in HF + Q and HF + RO compared to LF and HF. HF exhibited hypermethylation at the −260 nucleotide (nt) in the Pgc-1α promoter. Q and ROE prevented HFD-induced hypermethylation. −260 nt methylation levels were associated with NT-Pgc-1α expression only. Pgc-1α isoform expression may be epigenetically regulated by Q and ROE through DNA methylation.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.