Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz
{"title":"磁性活性炭吸附甲基橙过程的热力学和动力学研究","authors":"Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz","doi":"10.1177/11786221211013336","DOIUrl":null,"url":null,"abstract":"This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211013336","citationCount":"13","resultStr":"{\"title\":\"Thermodynamics and Kinetic Studies for the Adsorption Process of Methyl Orange by Magnetic Activated Carbons\",\"authors\":\"Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz\",\"doi\":\"10.1177/11786221211013336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/11786221211013336\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221211013336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211013336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Thermodynamics and Kinetic Studies for the Adsorption Process of Methyl Orange by Magnetic Activated Carbons
This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.