磁性活性炭吸附甲基橙过程的热力学和动力学研究

IF 3.5 Q2 ENVIRONMENTAL SCIENCES Air Soil and Water Research Pub Date : 2021-01-01 DOI:10.1177/11786221211013336
Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz
{"title":"磁性活性炭吸附甲基橙过程的热力学和动力学研究","authors":"Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz","doi":"10.1177/11786221211013336","DOIUrl":null,"url":null,"abstract":"This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211013336","citationCount":"13","resultStr":"{\"title\":\"Thermodynamics and Kinetic Studies for the Adsorption Process of Methyl Orange by Magnetic Activated Carbons\",\"authors\":\"Ana Karen Cordova Estrada, Felipe Cordova Lozano, René Alejandro Lara Díaz\",\"doi\":\"10.1177/11786221211013336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/11786221211013336\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221211013336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211013336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 13

摘要

研究了不同AC:磁铁矿比例的磁性活性炭对甲基橙(MO)的吸附行为。通过批量吸附MO实验,评价了MAC吸附剂的热力学和动力学参数。对pH值、染料初始浓度、接触时间和温度等变量进行了分析。采用扫描电子显微镜(SEM)、比表面积分析仪(BET)和x射线衍射分析了MACs的理化特性。SEM和BET分析结果表明,MAC吸附剂具有多孔结构和较大的表面积,适合吸附过程。MACs的x射线衍射图表明吸附剂具有磁铁矿作为磁性材料。对MACs进行的吸附动力学研究表明,伪二阶模型可以很好地描述动力学过程。吸附平衡结果符合Langmuir等温线,表明AC/磁铁矿比例为3:1和2:1的MACs吸附量最大。热力学分析表明,吸附过程是自然的、吸热的、物理的吸附。本研究结果表明,MAC吸附剂可以成功地用于去除水溶液中的MO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamics and Kinetic Studies for the Adsorption Process of Methyl Orange by Magnetic Activated Carbons
This study investigates the adsorption behavior of methyl orange (MO) by magnetic activated carbons (MACs) with different ratios of AC: Magnetite from aqueous solution. Batch experiments for MO adsorption were carried out for evaluating the thermodynamics and kinetics parameters onto the MAC adsorbents. Variables such as pH, initial concentration of the dye, contact time, and temperature have been analyzed. The physicochemical characteristics of MACs were analyzed by scanning electron microscopy (SEM), surface area analyzer (BET), and X-ray power diffraction. The results of SEM and BET analysis showed that MAC adsorbents present a porous structure and large surface area, suitable conditions for the adsorption process. The X-ray diffraction patterns of MACs revealed that the adsorbents possess magnetite as magnetic material. Adsorption kinetic studies carried out onto MACs showed that the pseudo-second-order model provides a good description of the kinetic process. The adsorption equilibrium results were well adjusted to the Langmuir isotherm, showing that the maximum adsorption capacity was for MACs with a ratio 3:1 and 2:1 AC/magnetite. Thermodynamic analysis declares that the adsorption process was established as spontaneous, endothermic, and physical adsorption in nature. The results of the this study indicated that MAC adsorbents can be used successfully for eliminating MO from aqueous solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
期刊最新文献
Evapotranspiration and Crop Coefficient of Sorghum (Sorghum bicolor L.) at Melkassa Farmland, Semi-Arid Area of Ethiopia Heavy Metal Migration in Soil-Plant System in Conditions of Urban Environmental Pollution Daily Variation on Soil Moisture and Temperature on Three Restinga Plant Formations Hydrological Components and Sediment Yield Response to Land Use Land Cover Change in The Ajora-Woybo Watershed of Omo-Gibe Basin, Ethiopia Modeling the Rainfall Exploitation of the Reservoirs in Malaga Province, Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1