{"title":"食品的物理性质及水对其水活性和玻璃化转变的影响","authors":"H. Kumagai","doi":"10.11301/jsfe.20584","DOIUrl":null,"url":null,"abstract":"Water sorption isotherms give information on the interaction between water and solid components in foods. Using solution thermodynamics, the thermodynamic parameters of both water and solutes can be estimated. The integral Gibbs free energy, Δ G s , is considered to be a suitable parameter for evaluating the interaction between solid and water from the thermodynamic point of view. The thermodynamic parameters obtained from water sorption isotherms relate to the degree of reduction in the glass transition temperature ( T g ), accompanied by water sorption. The difference between the chemical potential of solid (adsorbent) between a solution and a pure solid, Δ G as , which is obtained from water sorption isotherms by solution thermodynamics, is correlated well with Δ T g ( ≡ T g T g0 ; where T g0 is T g of dry material). This indicates that plasticizing effect of water on foods can be evaluated through the parameter Δ G as .","PeriodicalId":39399,"journal":{"name":"Japan Journal of Food Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physical Properties of Foods and the Effect of Water on Them-Water Activity and Glass Transition\",\"authors\":\"H. Kumagai\",\"doi\":\"10.11301/jsfe.20584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water sorption isotherms give information on the interaction between water and solid components in foods. Using solution thermodynamics, the thermodynamic parameters of both water and solutes can be estimated. The integral Gibbs free energy, Δ G s , is considered to be a suitable parameter for evaluating the interaction between solid and water from the thermodynamic point of view. The thermodynamic parameters obtained from water sorption isotherms relate to the degree of reduction in the glass transition temperature ( T g ), accompanied by water sorption. The difference between the chemical potential of solid (adsorbent) between a solution and a pure solid, Δ G as , which is obtained from water sorption isotherms by solution thermodynamics, is correlated well with Δ T g ( ≡ T g T g0 ; where T g0 is T g of dry material). This indicates that plasticizing effect of water on foods can be evaluated through the parameter Δ G as .\",\"PeriodicalId\":39399,\"journal\":{\"name\":\"Japan Journal of Food Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Food Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11301/jsfe.20584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Food Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11301/jsfe.20584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
摘要
水吸附等温线提供了食物中水和固体组分之间相互作用的信息。利用溶液热力学,可以估计水和溶质的热力学参数。积分吉布斯自由能Δ G s被认为是从热力学角度评价固水相互作用的合适参数。从吸水等温线得到的热力学参数与玻璃化转变温度(T g)的降低程度有关,并伴有吸水。溶液和纯固体(吸附剂)的化学势之差Δ G as,由溶液热力学从吸附剂的吸水等温线中得到,与Δ T G(≡T G T G;其中tg0为干燥物质的tg)。这说明水对食品的塑化作用可以通过Δ G as参数来评价。
Physical Properties of Foods and the Effect of Water on Them-Water Activity and Glass Transition
Water sorption isotherms give information on the interaction between water and solid components in foods. Using solution thermodynamics, the thermodynamic parameters of both water and solutes can be estimated. The integral Gibbs free energy, Δ G s , is considered to be a suitable parameter for evaluating the interaction between solid and water from the thermodynamic point of view. The thermodynamic parameters obtained from water sorption isotherms relate to the degree of reduction in the glass transition temperature ( T g ), accompanied by water sorption. The difference between the chemical potential of solid (adsorbent) between a solution and a pure solid, Δ G as , which is obtained from water sorption isotherms by solution thermodynamics, is correlated well with Δ T g ( ≡ T g T g0 ; where T g0 is T g of dry material). This indicates that plasticizing effect of water on foods can be evaluated through the parameter Δ G as .
期刊介绍:
The Japan Society for Food Engineering (the Society) publishes "Japan Journal of Food Engineering (the Journal)" to convey and disseminate information regarding food engineering and related areas to all members of the Society as an important part of its activities. The Journal is published with an aim of gaining wide recognition as a periodical pertaining to food engineering and related areas.