基于全场测量的腰椎安全带生物力学研究方案的可行性:一个案例研究

R. Bonnaire, W. Han, R. Convert, P. Calmels, J. Molimard
{"title":"基于全场测量的腰椎安全带生物力学研究方案的可行性:一个案例研究","authors":"R. Bonnaire, W. Han, R. Convert, P. Calmels, J. Molimard","doi":"10.3390/biomechanics2020015","DOIUrl":null,"url":null,"abstract":"Low back pain represents a major economic and societal challenge due to its high prevalence. Lumbar orthoses are one of the recommended treatments. Even if previous results showed their clinical effects, the detailed mode of action is still poorly known, making the device design difficult. A renewed instrumentation and experimental protocol should bring better insight into the lumbar brace–trunk mechanical interaction. This instrumentation should give detailed information on the basic physical or geometrical parameters: the pressure applied on the trunk, the body shape and the strain in the belt. The principal objective of this study was to propose and validate a new measurement protocol, based on pressure mapping systems and full-field shape and strain measurement. The feasibility of the protocol was tested along with its validity and repeatability. The influence of various parameters, which could cause changes in the measurements, was tested with six different belt configurations on one subject. Measurements were also performed to study the impact of posture on pressure and strain. Both pressure and strain appeared to be asymmetric from left to right. The pressure applied by the lumbar belt on the back varies with breathing and with posture. This study showed that full-field measurements were necessary to render the high variability of pressure or strain around the trunk, under recommendations of their use to guarantee a satisfying repeatability.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of a Full-Field Measurements-Based Protocol for the Biomechanical Study of a Lumbar Belt: A Case Study\",\"authors\":\"R. Bonnaire, W. Han, R. Convert, P. Calmels, J. Molimard\",\"doi\":\"10.3390/biomechanics2020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low back pain represents a major economic and societal challenge due to its high prevalence. Lumbar orthoses are one of the recommended treatments. Even if previous results showed their clinical effects, the detailed mode of action is still poorly known, making the device design difficult. A renewed instrumentation and experimental protocol should bring better insight into the lumbar brace–trunk mechanical interaction. This instrumentation should give detailed information on the basic physical or geometrical parameters: the pressure applied on the trunk, the body shape and the strain in the belt. The principal objective of this study was to propose and validate a new measurement protocol, based on pressure mapping systems and full-field shape and strain measurement. The feasibility of the protocol was tested along with its validity and repeatability. The influence of various parameters, which could cause changes in the measurements, was tested with six different belt configurations on one subject. Measurements were also performed to study the impact of posture on pressure and strain. Both pressure and strain appeared to be asymmetric from left to right. The pressure applied by the lumbar belt on the back varies with breathing and with posture. This study showed that full-field measurements were necessary to render the high variability of pressure or strain around the trunk, under recommendations of their use to guarantee a satisfying repeatability.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics2020015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics2020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于腰痛的高患病率,腰痛是一个重大的经济和社会挑战。腰椎矫形器是推荐的治疗方法之一。即使先前的结果显示了它们的临床效果,但详细的作用模式仍然知之甚少,这使得设备设计变得困难。更新的仪器和实验方案应该能更好地了解腰椎支架-躯干的力学相互作用。该仪器应提供有关基本物理或几何参数的详细信息:施加在躯干上的压力,身体形状和安全带上的应变。本研究的主要目的是提出并验证一种新的测量方案,基于压力映射系统和全场形状和应变测量。验证了协议的可行性,验证了协议的有效性和可重复性。各种参数的影响可能导致测量结果的变化,在一个主题上用六种不同的皮带配置进行了测试。还进行了测量,以研究姿势对压力和应变的影响。压力和应变从左到右都是不对称的。腰束带对背部施加的压力随呼吸和姿势的不同而变化。这项研究表明,在建议下,为了保证令人满意的可重复性,需要进行现场测量,以呈现树干周围压力或应变的高变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of a Full-Field Measurements-Based Protocol for the Biomechanical Study of a Lumbar Belt: A Case Study
Low back pain represents a major economic and societal challenge due to its high prevalence. Lumbar orthoses are one of the recommended treatments. Even if previous results showed their clinical effects, the detailed mode of action is still poorly known, making the device design difficult. A renewed instrumentation and experimental protocol should bring better insight into the lumbar brace–trunk mechanical interaction. This instrumentation should give detailed information on the basic physical or geometrical parameters: the pressure applied on the trunk, the body shape and the strain in the belt. The principal objective of this study was to propose and validate a new measurement protocol, based on pressure mapping systems and full-field shape and strain measurement. The feasibility of the protocol was tested along with its validity and repeatability. The influence of various parameters, which could cause changes in the measurements, was tested with six different belt configurations on one subject. Measurements were also performed to study the impact of posture on pressure and strain. Both pressure and strain appeared to be asymmetric from left to right. The pressure applied by the lumbar belt on the back varies with breathing and with posture. This study showed that full-field measurements were necessary to render the high variability of pressure or strain around the trunk, under recommendations of their use to guarantee a satisfying repeatability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections Postural Control Behavior in a Virtual Moving Room Paradigm Patient-Specific 3D Virtual Surgical Planning Using Simulated Fluoroscopic Images to Improve Sacroiliac Joint Fusion Optimization of a Cost-Constrained, Hydraulic Knee Prosthesis Using a Kinematic Analysis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1