{"title":"骨水泥间隙厚度对全氧化锆冠边缘适应度的影响——体外研究","authors":"F. Taha, Zainab Jasim, Hala Husseien","doi":"10.4103/JIOH.JIOH_275_21","DOIUrl":null,"url":null,"abstract":"Aim: To estimate the influence of cement-space thickness on the vertical marginal fitness of full zirconia crowns. Materials and Methods: A total of 24 newly extracted sound human maxillary first premolars were mounted and thereafter prepared to receive fully contoured zirconia crowns. Teeth were scanned via Chairside Economical Restoration of Esthetic Ceramic (CEREC) digital intraoral scanner (Omnicam, Sirona, Germany). Afterward, teeth were randomly assorted into three groups (depending on the cement-space thickness parameter of their corresponding designed crowns): group A = 80 μm, group B = 100 μm, and group C = 120 μm. Zirconia crowns were assembled using In-Lab MCX5 milling machine (Sirona). The cementation procedure was undergone using RelyX Unicem self-adhesive luting cement (3M, ESPE, Germany). The marginal discrepancy was measured at 16 points/tooth utilizing a digital microscope (85× magnification). Data were statistically analyzed utilizing one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (P = 0.05). Results: The analysis revealed that the cement-space thickness parameter had a highly significant effect on the marginal gap values in all groups. The lowest mean of marginal gap values was noted for group C (120 μm). Conclusion: Increasing cement-space thickness from 80 μm to 100 and 120 μm might be favorable for a better adaptation of monolithic zirconia crowns.","PeriodicalId":16138,"journal":{"name":"Journal of International Oral Health","volume":"14 1","pages":"382 - 385"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cement-space thickness on the marginal fitness of all zirconium oxide crowns—An in vitro study\",\"authors\":\"F. Taha, Zainab Jasim, Hala Husseien\",\"doi\":\"10.4103/JIOH.JIOH_275_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: To estimate the influence of cement-space thickness on the vertical marginal fitness of full zirconia crowns. Materials and Methods: A total of 24 newly extracted sound human maxillary first premolars were mounted and thereafter prepared to receive fully contoured zirconia crowns. Teeth were scanned via Chairside Economical Restoration of Esthetic Ceramic (CEREC) digital intraoral scanner (Omnicam, Sirona, Germany). Afterward, teeth were randomly assorted into three groups (depending on the cement-space thickness parameter of their corresponding designed crowns): group A = 80 μm, group B = 100 μm, and group C = 120 μm. Zirconia crowns were assembled using In-Lab MCX5 milling machine (Sirona). The cementation procedure was undergone using RelyX Unicem self-adhesive luting cement (3M, ESPE, Germany). The marginal discrepancy was measured at 16 points/tooth utilizing a digital microscope (85× magnification). Data were statistically analyzed utilizing one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (P = 0.05). Results: The analysis revealed that the cement-space thickness parameter had a highly significant effect on the marginal gap values in all groups. The lowest mean of marginal gap values was noted for group C (120 μm). Conclusion: Increasing cement-space thickness from 80 μm to 100 and 120 μm might be favorable for a better adaptation of monolithic zirconia crowns.\",\"PeriodicalId\":16138,\"journal\":{\"name\":\"Journal of International Oral Health\",\"volume\":\"14 1\",\"pages\":\"382 - 385\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Oral Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/JIOH.JIOH_275_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Oral Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JIOH.JIOH_275_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of cement-space thickness on the marginal fitness of all zirconium oxide crowns—An in vitro study
Aim: To estimate the influence of cement-space thickness on the vertical marginal fitness of full zirconia crowns. Materials and Methods: A total of 24 newly extracted sound human maxillary first premolars were mounted and thereafter prepared to receive fully contoured zirconia crowns. Teeth were scanned via Chairside Economical Restoration of Esthetic Ceramic (CEREC) digital intraoral scanner (Omnicam, Sirona, Germany). Afterward, teeth were randomly assorted into three groups (depending on the cement-space thickness parameter of their corresponding designed crowns): group A = 80 μm, group B = 100 μm, and group C = 120 μm. Zirconia crowns were assembled using In-Lab MCX5 milling machine (Sirona). The cementation procedure was undergone using RelyX Unicem self-adhesive luting cement (3M, ESPE, Germany). The marginal discrepancy was measured at 16 points/tooth utilizing a digital microscope (85× magnification). Data were statistically analyzed utilizing one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (P = 0.05). Results: The analysis revealed that the cement-space thickness parameter had a highly significant effect on the marginal gap values in all groups. The lowest mean of marginal gap values was noted for group C (120 μm). Conclusion: Increasing cement-space thickness from 80 μm to 100 and 120 μm might be favorable for a better adaptation of monolithic zirconia crowns.
期刊介绍:
It is a journal aimed for research, scientific facts and details covering all specialties of dentistry with a good determination for exploring and sharing the knowledge in the medical and dental fraternity. The scope is therefore huge covering almost all streams of dentistry - starting from original studies, systematic reviews, narrative reviews, very unique case reports. Our journal appreciates research articles pertaining with advancement of dentistry. Journal scope is not limited to these subjects and is more wider covering all specialities of dentistry follows: Preventive and Community Dentistry (Dental Public Health) Endodontics Oral and Maxillofacial Pathology Oral and Maxillofacial Radiology Oral and Maxillofacial Surgery (also called Oral Surgery) Orthodontics and Dentofacial Orthopaedics Periodontology (also called Periodontics) Pediatric Dentistry (also called Pedodontics) Prosthodontics (also called Prosthetic Dentistry) Oral Medicine Special Needs Dentistry (also called Special Care Dentistry) Oral Biology Forensic Odontology Geriatric Dentistry or Geriodontics Implantology Laser and Aesthetic Dentistry.