Liang-Liang Xia, Shi-Hong Zhang, Yong Xu, Shuai-Feng Chen, Boris B. Khina, Artur I. Pokrovsky
{"title":"复杂铝合金板件冲击液压成形的变形特性及惯性效应:实验与数值分析","authors":"Liang-Liang Xia, Shi-Hong Zhang, Yong Xu, Shuai-Feng Chen, Boris B. Khina, Artur I. Pokrovsky","doi":"10.1007/s40436-022-00430-0","DOIUrl":null,"url":null,"abstract":"<div><p>Impact hydroforming (IHF), as a novel sheet metal forming technology with the advantages of high strain rate forming and flexible liquid loading, is highly suitable for efficiently manufacturing aluminum complex-shaped sheet parts. In this paper, deformation characteristics of complex sheet parts under IHF are systematically investigated. The mechanical properties of 2024 aluminum alloy under a wide range of strain rates (10<sup>−3</sup> s<sup>−1</sup>–3.3×10<sup>3</sup> s<sup>−1</sup>) were studied. It indicated that the elongation of 2024 aluminum alloy was improved by 116.01% under strain rates of 3.306 × 10<sup>3</sup> s<sup>−1</sup>, referring to 10<sup>−3</sup> s<sup>−1</sup>. Further, a complex-shaped part with symmetrical and asymmetrical structures was selected. The deformation characteristics of sheet and role of inertial effect under IHF were investigated with well-developed solid–liquid coupling finite element (SLC-FE) model with high accuracy. Differentiating deformation tendency is found for symmetrical structure with notably prior deformation at central zone, showing a “bulging” profile at initial forming stage. Whereas, synchronous deformation is presented for asymmetrical structure with a “flat” profile. Additionally, distinctive inertial effect was observed at different positions change for both symmetrical and asymmetrical structures, in which lower values were resulted at their central regions. Meanwhile, the inertial effect evolved with the impacting speed. Specially, larger difference of inertial effect was observed with increasing impacting speed.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"311 - 328"},"PeriodicalIF":4.2000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-022-00430-0.pdf","citationCount":"3","resultStr":"{\"title\":\"Deformation characteristics and inertial effect of complex aluminum alloy sheet part under impact hydroforming: experiments and numerical analysis\",\"authors\":\"Liang-Liang Xia, Shi-Hong Zhang, Yong Xu, Shuai-Feng Chen, Boris B. Khina, Artur I. Pokrovsky\",\"doi\":\"10.1007/s40436-022-00430-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Impact hydroforming (IHF), as a novel sheet metal forming technology with the advantages of high strain rate forming and flexible liquid loading, is highly suitable for efficiently manufacturing aluminum complex-shaped sheet parts. In this paper, deformation characteristics of complex sheet parts under IHF are systematically investigated. The mechanical properties of 2024 aluminum alloy under a wide range of strain rates (10<sup>−3</sup> s<sup>−1</sup>–3.3×10<sup>3</sup> s<sup>−1</sup>) were studied. It indicated that the elongation of 2024 aluminum alloy was improved by 116.01% under strain rates of 3.306 × 10<sup>3</sup> s<sup>−1</sup>, referring to 10<sup>−3</sup> s<sup>−1</sup>. Further, a complex-shaped part with symmetrical and asymmetrical structures was selected. The deformation characteristics of sheet and role of inertial effect under IHF were investigated with well-developed solid–liquid coupling finite element (SLC-FE) model with high accuracy. Differentiating deformation tendency is found for symmetrical structure with notably prior deformation at central zone, showing a “bulging” profile at initial forming stage. Whereas, synchronous deformation is presented for asymmetrical structure with a “flat” profile. Additionally, distinctive inertial effect was observed at different positions change for both symmetrical and asymmetrical structures, in which lower values were resulted at their central regions. Meanwhile, the inertial effect evolved with the impacting speed. Specially, larger difference of inertial effect was observed with increasing impacting speed.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"311 - 328\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40436-022-00430-0.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00430-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00430-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Deformation characteristics and inertial effect of complex aluminum alloy sheet part under impact hydroforming: experiments and numerical analysis
Impact hydroforming (IHF), as a novel sheet metal forming technology with the advantages of high strain rate forming and flexible liquid loading, is highly suitable for efficiently manufacturing aluminum complex-shaped sheet parts. In this paper, deformation characteristics of complex sheet parts under IHF are systematically investigated. The mechanical properties of 2024 aluminum alloy under a wide range of strain rates (10−3 s−1–3.3×103 s−1) were studied. It indicated that the elongation of 2024 aluminum alloy was improved by 116.01% under strain rates of 3.306 × 103 s−1, referring to 10−3 s−1. Further, a complex-shaped part with symmetrical and asymmetrical structures was selected. The deformation characteristics of sheet and role of inertial effect under IHF were investigated with well-developed solid–liquid coupling finite element (SLC-FE) model with high accuracy. Differentiating deformation tendency is found for symmetrical structure with notably prior deformation at central zone, showing a “bulging” profile at initial forming stage. Whereas, synchronous deformation is presented for asymmetrical structure with a “flat” profile. Additionally, distinctive inertial effect was observed at different positions change for both symmetrical and asymmetrical structures, in which lower values were resulted at their central regions. Meanwhile, the inertial effect evolved with the impacting speed. Specially, larger difference of inertial effect was observed with increasing impacting speed.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.