柔性、高强度钛纳米线用于仿生牙周膜支架

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2021-05-30 DOI:10.1049/bsb2.12010
Jin Li, Licheng Hua, Weiyuan Wang, Chenjie Gu, Jianke Du, Conghu Hu
{"title":"柔性、高强度钛纳米线用于仿生牙周膜支架","authors":"Jin Li,&nbsp;Licheng Hua,&nbsp;Weiyuan Wang,&nbsp;Chenjie Gu,&nbsp;Jianke Du,&nbsp;Conghu Hu","doi":"10.1049/bsb2.12010","DOIUrl":null,"url":null,"abstract":"<p>A layer of micro-sized periodontal membrane can buffer most chewing forces to protect the interface between the natural tooth root and alveolar bone. Artificial dental implants usually direct contact onto the alveolar bone without a buffer layer, which increases the risk of surface damage. The main purpose of this work was the bionic design of a flexible layer of nanowire scaffold on a titanium implant surface according to the function of the periodontal membrane. Millions of nanowires were woven into a superhydrophilic layer of porous scaffold. The evolution of mechanical properties displayed that the biomimetic nanowire scaffold could absorb a maximum of about 1.59 KJ energy per square centimeter by low-speed impact. The minimum tensile strength of one nanowire was 2 GPa. A biomimetic flexible periodontal membrane connection functioning between the natural tooth root and alveolar bone has great potential value for developing advanced artificial dental implants for dental restorations.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12010","citationCount":"0","resultStr":"{\"title\":\"Flexible, high-strength titanium nanowire for scaffold biomimetic periodontal membrane\",\"authors\":\"Jin Li,&nbsp;Licheng Hua,&nbsp;Weiyuan Wang,&nbsp;Chenjie Gu,&nbsp;Jianke Du,&nbsp;Conghu Hu\",\"doi\":\"10.1049/bsb2.12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A layer of micro-sized periodontal membrane can buffer most chewing forces to protect the interface between the natural tooth root and alveolar bone. Artificial dental implants usually direct contact onto the alveolar bone without a buffer layer, which increases the risk of surface damage. The main purpose of this work was the bionic design of a flexible layer of nanowire scaffold on a titanium implant surface according to the function of the periodontal membrane. Millions of nanowires were woven into a superhydrophilic layer of porous scaffold. The evolution of mechanical properties displayed that the biomimetic nanowire scaffold could absorb a maximum of about 1.59 KJ energy per square centimeter by low-speed impact. The minimum tensile strength of one nanowire was 2 GPa. A biomimetic flexible periodontal membrane connection functioning between the natural tooth root and alveolar bone has great potential value for developing advanced artificial dental implants for dental restorations.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

宁波大学机械工程与力学学院,冲击与安全工程教育部重点实验室,宁波,南京航空航天大学智能纳米材料与器件教育部重点实验室,南京,清华大学摩擦学国家重点实验室,北京,浙江大学医学院,附属杭州第一人民医院,中国口外科,宁波大学微电子与工程系,浙江宁波
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible, high-strength titanium nanowire for scaffold biomimetic periodontal membrane

A layer of micro-sized periodontal membrane can buffer most chewing forces to protect the interface between the natural tooth root and alveolar bone. Artificial dental implants usually direct contact onto the alveolar bone without a buffer layer, which increases the risk of surface damage. The main purpose of this work was the bionic design of a flexible layer of nanowire scaffold on a titanium implant surface according to the function of the periodontal membrane. Millions of nanowires were woven into a superhydrophilic layer of porous scaffold. The evolution of mechanical properties displayed that the biomimetic nanowire scaffold could absorb a maximum of about 1.59 KJ energy per square centimeter by low-speed impact. The minimum tensile strength of one nanowire was 2 GPa. A biomimetic flexible periodontal membrane connection functioning between the natural tooth root and alveolar bone has great potential value for developing advanced artificial dental implants for dental restorations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1