LL-37与癌霉素II联合抗鲍曼不动杆菌体外药动学研究

IF 0.5 4区 医学 Q4 MICROBIOLOGY Jundishapur Journal of Microbiology Pub Date : 2023-01-21 DOI:10.5812/jjm-131299
Mozhdeh Safari, Robab Rafiei Tabatabaei, H. Abtahi, S. Fahimirad, A. Alimoradian
{"title":"LL-37与癌霉素II联合抗鲍曼不动杆菌体外药动学研究","authors":"Mozhdeh Safari, Robab Rafiei Tabatabaei, H. Abtahi, S. Fahimirad, A. Alimoradian","doi":"10.5812/jjm-131299","DOIUrl":null,"url":null,"abstract":"Background: Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most common nosocomial pathogens. Antimicrobial peptides (AMPs) have been introduced as a viable alternative to antibiotics in the treatment of MDR pathogens. Objectives: This study was designed to assess the in vitro pharmacokinetics of the combination of two potent AMPs, LL-37 and oncorhyncin II, against A. baumannii (ATCC19606). Methods: The synthesized genes of oncorhyncin II and LL-37 were introduced into Escherichia coli BL21 as the expression host. The minimum inhibitory concentration (MIC), time-kills, and growth kinetics of these peptides were used to evaluate their antimicrobial efficiencies against A. baumannii (ATCC19606). Results: LL-37 and oncorhyncin II recombinant peptides showed MIC of 30.6 and 95.87 µg/mL against A. baumannii, respectively. Additive action was confirmed by combining the generated AMPs at the checkerboard approach. The combination of LL-37 and oncorhyncin II at 2 × MIC resulted in a rapid drop in log10 CFU/mL of A. baumannii in the time-kill and growth kinetic findings studies. Conclusions: The combination of the produced LL-37 and oncorhyncin II synergizes the bioactivity of the individual peptides. Therefore, these peptides or their combinations might function as novel antibiotics and be used to develop and produce new antimicrobial drugs for the treatment of infections caused by A. baumannii.","PeriodicalId":17803,"journal":{"name":"Jundishapur Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Pharmacokinetics of LL-37 and Oncorhyncin II Combination Against Acinetobacter baumannii\",\"authors\":\"Mozhdeh Safari, Robab Rafiei Tabatabaei, H. Abtahi, S. Fahimirad, A. Alimoradian\",\"doi\":\"10.5812/jjm-131299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most common nosocomial pathogens. Antimicrobial peptides (AMPs) have been introduced as a viable alternative to antibiotics in the treatment of MDR pathogens. Objectives: This study was designed to assess the in vitro pharmacokinetics of the combination of two potent AMPs, LL-37 and oncorhyncin II, against A. baumannii (ATCC19606). Methods: The synthesized genes of oncorhyncin II and LL-37 were introduced into Escherichia coli BL21 as the expression host. The minimum inhibitory concentration (MIC), time-kills, and growth kinetics of these peptides were used to evaluate their antimicrobial efficiencies against A. baumannii (ATCC19606). Results: LL-37 and oncorhyncin II recombinant peptides showed MIC of 30.6 and 95.87 µg/mL against A. baumannii, respectively. Additive action was confirmed by combining the generated AMPs at the checkerboard approach. The combination of LL-37 and oncorhyncin II at 2 × MIC resulted in a rapid drop in log10 CFU/mL of A. baumannii in the time-kill and growth kinetic findings studies. Conclusions: The combination of the produced LL-37 and oncorhyncin II synergizes the bioactivity of the individual peptides. Therefore, these peptides or their combinations might function as novel antibiotics and be used to develop and produce new antimicrobial drugs for the treatment of infections caused by A. baumannii.\",\"PeriodicalId\":17803,\"journal\":{\"name\":\"Jundishapur Journal of Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jundishapur Journal of Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5812/jjm-131299\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/jjm-131299","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:多药耐药鲍曼不动杆菌是最常见的医院病原菌之一。抗菌肽(AMPs)已被引入作为抗生素治疗耐多药病原体的可行替代方案。目的:本研究旨在评价两种强效抗菌肽(LL-37和oncorhyncin II)联合抗鲍曼不动杆菌(ATCC19606)的体外药动学。方法:将合成的癌杆菌素II和LL-37基因导入大肠杆菌BL21作为表达宿主。这些肽的最低抑制浓度(MIC)、时间杀伤和生长动力学被用来评估它们对鲍曼不动杆菌的抗菌效率(ATCC19606)。结果:LL-37和oncorhyncin II重组肽对鲍曼弧菌的MIC分别为30.6µg/mL和95.87µg/mL。通过结合棋盘法生成的amp来确认加性作用。在2 × MIC条件下,LL-37与嗜癌素II联合使用可使鲍曼不动杆菌的杀灭量和生长动力学结果迅速下降log10 CFU/mL。结论:所制备的LL-37与癌霉素II联合使用可协同各肽的生物活性。因此,这些肽或其组合可能具有新型抗生素的功能,并可用于开发和生产治疗鲍曼不动杆菌感染的新型抗菌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Vitro Pharmacokinetics of LL-37 and Oncorhyncin II Combination Against Acinetobacter baumannii
Background: Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most common nosocomial pathogens. Antimicrobial peptides (AMPs) have been introduced as a viable alternative to antibiotics in the treatment of MDR pathogens. Objectives: This study was designed to assess the in vitro pharmacokinetics of the combination of two potent AMPs, LL-37 and oncorhyncin II, against A. baumannii (ATCC19606). Methods: The synthesized genes of oncorhyncin II and LL-37 were introduced into Escherichia coli BL21 as the expression host. The minimum inhibitory concentration (MIC), time-kills, and growth kinetics of these peptides were used to evaluate their antimicrobial efficiencies against A. baumannii (ATCC19606). Results: LL-37 and oncorhyncin II recombinant peptides showed MIC of 30.6 and 95.87 µg/mL against A. baumannii, respectively. Additive action was confirmed by combining the generated AMPs at the checkerboard approach. The combination of LL-37 and oncorhyncin II at 2 × MIC resulted in a rapid drop in log10 CFU/mL of A. baumannii in the time-kill and growth kinetic findings studies. Conclusions: The combination of the produced LL-37 and oncorhyncin II synergizes the bioactivity of the individual peptides. Therefore, these peptides or their combinations might function as novel antibiotics and be used to develop and produce new antimicrobial drugs for the treatment of infections caused by A. baumannii.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Jundishapur Journal of Microbiology, (JJM) is the official scientific Monthly publication of Ahvaz Jundishapur University of Medical Sciences. JJM is dedicated to the publication of manuscripts on topics concerning all aspects of microbiology. The topics include medical, veterinary and environmental microbiology, molecular investigations and infectious diseases. Aspects of immunology and epidemiology of infectious diseases are also considered.
期刊最新文献
A Perspective Study on Therapeutic Drug Monitoring of Voriconazole in Pediatric Patients with Hematologic Disorders Genomic Characterization and Antimicrobial Resistance of Four Mcr-1 Escherichia coli Strains Isolated from Human and Environment Sources, Hainan Province, Tropical China IP-10, MIP1α, IL-6, and IL-1β as Biomarkers Associated with Disease Severity of COVID-19 Efficacy of Crude Extract from Streptomyces cellulosae Against Biofilm-Related Genes of Candida albicans Multiple-Locus Variable-Number Tandem Repeat Analysis Genotyping of Biofilm-Producing Pseudomonas aeruginosa Clinical Isolates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1