白花蒿的离体再生与遗传转化培养

Q3 Biochemistry, Genetics and Molecular Biology Journal of Applied Biotechnology Reports Pub Date : 2021-09-01 DOI:10.30491/JABR.2020.238560.1251
Mina Beigmohammadi, M. Seyyedi, S. Rostampour, Elmira Mohammadi, A. Sharafi
{"title":"白花蒿的离体再生与遗传转化培养","authors":"Mina Beigmohammadi, M. Seyyedi, S. Rostampour, Elmira Mohammadi, A. Sharafi","doi":"10.30491/JABR.2020.238560.1251","DOIUrl":null,"url":null,"abstract":"Introduction: The present study has introduced a simple and rapid tissue culture system aimed at in vitro regeneration of Artemisia diffusa and in vitro artemisinin production in its genetically transformed culture.Materials and Methods: An in vitro regeneration of A. diffusa was developed using different combinations of plant growth regulators including Naphthalene Acetic Acid (NAA), Indole-3-Acetic Acid (IAA), Thidiazuron (TDZ) and Benzyl Adenine (BA). Also, an efficient genetically transformed root induction system for A. diffusa was developed through Agrobacterium rhizogenes- mediated transformation using four bacterial strains, A4, ATCC15834, MSU440, and MAFF-02-10266. The stem and leaf of one month old sterile plants of A. diffusa were used as explants. Molecular analysis of transformed root lines was confirmed by PCR using primers specific for the rolB gene.Results: The highest regeneration occurrence was obtained using MS medium containing 0.5 mg/L TDZ and 0.1 mg/L IAA (75%). Root induction was obtained on MS medium supplemented with 0.5 mg/L IBA. The results showed a significant increase in transformation frequency when the strain MSU440 was used (80.7%). Approximately 0.05 % artemisinin was detected by High-performance liquid chromatography (HPLC) analysis in root cultures. To the best of our knowledge, this is the first report of A. diffusa in vitro organogenesis and transformation.Conclusions: This study describes an efficient protocol for hairy roots culture of A. diffusa which can be used for scaling up the plant active phytochemicals or for genetic manipulations of the plant.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In vitro Regeneration and Genetically Transformed Culture of Artemisia diffusa\",\"authors\":\"Mina Beigmohammadi, M. Seyyedi, S. Rostampour, Elmira Mohammadi, A. Sharafi\",\"doi\":\"10.30491/JABR.2020.238560.1251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The present study has introduced a simple and rapid tissue culture system aimed at in vitro regeneration of Artemisia diffusa and in vitro artemisinin production in its genetically transformed culture.Materials and Methods: An in vitro regeneration of A. diffusa was developed using different combinations of plant growth regulators including Naphthalene Acetic Acid (NAA), Indole-3-Acetic Acid (IAA), Thidiazuron (TDZ) and Benzyl Adenine (BA). Also, an efficient genetically transformed root induction system for A. diffusa was developed through Agrobacterium rhizogenes- mediated transformation using four bacterial strains, A4, ATCC15834, MSU440, and MAFF-02-10266. The stem and leaf of one month old sterile plants of A. diffusa were used as explants. Molecular analysis of transformed root lines was confirmed by PCR using primers specific for the rolB gene.Results: The highest regeneration occurrence was obtained using MS medium containing 0.5 mg/L TDZ and 0.1 mg/L IAA (75%). Root induction was obtained on MS medium supplemented with 0.5 mg/L IBA. The results showed a significant increase in transformation frequency when the strain MSU440 was used (80.7%). Approximately 0.05 % artemisinin was detected by High-performance liquid chromatography (HPLC) analysis in root cultures. To the best of our knowledge, this is the first report of A. diffusa in vitro organogenesis and transformation.Conclusions: This study describes an efficient protocol for hairy roots culture of A. diffusa which can be used for scaling up the plant active phytochemicals or for genetic manipulations of the plant.\",\"PeriodicalId\":14945,\"journal\":{\"name\":\"Journal of Applied Biotechnology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30491/JABR.2020.238560.1251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.238560.1251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

引言:本研究介绍了一种简单快速的组织培养系统,旨在体外再生白花蒿,并在其转基因培养基中体外生产青蒿素。材料和方法:采用萘乙酸(NAA)、吲哚-3-乙酸(IAA)、噻二唑仑(TDZ)和苄基腺嘌呤(BA)等植物生长调节剂的不同组合,对白花蛇舌草进行体外再生。此外,通过根际农杆菌介导的A4、ATCC15834、MSU440和MAFF-02-10266四个菌株的转化,开发了一种高效的遗传转化的白花蛇舌草根系诱导系统。以一个月龄的白花蛇舌草无菌植株的茎和叶为外植体。通过使用对rolB基因特异的引物的PCR来确认转化根系的分子分析。结果:在含有0.5mg/L TDZ和0.1mg/L IAA的MS培养基中,再生率最高(75%)。在添加0.5mg/L IBA的MS培养基上进行生根诱导。结果表明,使用MSU440菌株时,转化频率显著提高(80.7%)。高效液相色谱法在根培养物中检测到约0.05%的青蒿素。据我们所知,这是第一篇关于白花蛇舌草体外器官发生和转化的报道。结论:本研究描述了一种有效的白花蛇舌草毛状根培养方案,该方案可用于扩大植物活性化学物质的规模或对植物进行遗传操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro Regeneration and Genetically Transformed Culture of Artemisia diffusa
Introduction: The present study has introduced a simple and rapid tissue culture system aimed at in vitro regeneration of Artemisia diffusa and in vitro artemisinin production in its genetically transformed culture.Materials and Methods: An in vitro regeneration of A. diffusa was developed using different combinations of plant growth regulators including Naphthalene Acetic Acid (NAA), Indole-3-Acetic Acid (IAA), Thidiazuron (TDZ) and Benzyl Adenine (BA). Also, an efficient genetically transformed root induction system for A. diffusa was developed through Agrobacterium rhizogenes- mediated transformation using four bacterial strains, A4, ATCC15834, MSU440, and MAFF-02-10266. The stem and leaf of one month old sterile plants of A. diffusa were used as explants. Molecular analysis of transformed root lines was confirmed by PCR using primers specific for the rolB gene.Results: The highest regeneration occurrence was obtained using MS medium containing 0.5 mg/L TDZ and 0.1 mg/L IAA (75%). Root induction was obtained on MS medium supplemented with 0.5 mg/L IBA. The results showed a significant increase in transformation frequency when the strain MSU440 was used (80.7%). Approximately 0.05 % artemisinin was detected by High-performance liquid chromatography (HPLC) analysis in root cultures. To the best of our knowledge, this is the first report of A. diffusa in vitro organogenesis and transformation.Conclusions: This study describes an efficient protocol for hairy roots culture of A. diffusa which can be used for scaling up the plant active phytochemicals or for genetic manipulations of the plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biotechnology Reports
Journal of Applied Biotechnology Reports Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.90
自引率
0.00%
发文量
0
期刊介绍: The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis
期刊最新文献
Biodegradation of Tetrachloroethene in Batch Experiment and PHREEQC Model; Kinetic Study Involved Molecular Mechanisms in Stem Cells Differentiation into Chondrocyte: A Review Evaluation and Optimization of Bioethanol Production from Pomegranate Peel by Zymomonas mobilis Insect Antimicrobial Peptides –Therapeutic and Agriculture Perspective A comprehensive study on SARS-CoV-2 Through Gene Expression Meta-Analysis and Network Biology Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1