跨模态检索的联合哈希特征和分类器学习

刘昊鑫, 吴小俊, 庾骏
{"title":"跨模态检索的联合哈希特征和分类器学习","authors":"刘昊鑫, 吴小俊, 庾骏","doi":"10.16451/J.CNKI.ISSN1003-6059.202002008","DOIUrl":null,"url":null,"abstract":"To solve the problem of low retrieval accuracy and long training time in cross-modal retrieval algorithms,a cross-modal retrieval algorithm joining hashing feature and classifier learning(HFCL)is proposed.Uniform hash codes are utilized to describe different modal data with the same semantics.In the training stage,label information is utilized to study discriminative hash codes.And the kernel logistic regression is adopted to learn the hash function of each modal.In the testing stage,for any sample,the hash feature is generated by learned hash function,and another modal datum related to its semantics is retrieved from the database.Experiments on three public datasets verify the effectiveness of HFCL.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Hashing Feature and Classifier Learning for Cross-Modal Retrieval\",\"authors\":\"刘昊鑫, 吴小俊, 庾骏\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202002008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of low retrieval accuracy and long training time in cross-modal retrieval algorithms,a cross-modal retrieval algorithm joining hashing feature and classifier learning(HFCL)is proposed.Uniform hash codes are utilized to describe different modal data with the same semantics.In the training stage,label information is utilized to study discriminative hash codes.And the kernel logistic regression is adopted to learn the hash function of each modal.In the testing stage,for any sample,the hash feature is generated by learned hash function,and another modal datum related to its semantics is retrieved from the database.Experiments on three public datasets verify the effectiveness of HFCL.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202002008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202002008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

针对跨模态检索算法检索精度低、训练时间长等问题,提出了一种结合哈希特征和分类器学习的跨模态检索算法(HFCL)。统一哈希码用于用相同的语义描述不同的模态数据。在训练阶段,利用标签信息学习判别哈希码。采用核逻辑回归学习各模态的哈希函数。在测试阶段,对于任何样本,哈希特征都由学习到的哈希函数生成,并从数据库中检索与其语义相关的另一个模态数据。在三个公共数据集上的实验验证了HFCL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Hashing Feature and Classifier Learning for Cross-Modal Retrieval
To solve the problem of low retrieval accuracy and long training time in cross-modal retrieval algorithms,a cross-modal retrieval algorithm joining hashing feature and classifier learning(HFCL)is proposed.Uniform hash codes are utilized to describe different modal data with the same semantics.In the training stage,label information is utilized to study discriminative hash codes.And the kernel logistic regression is adopted to learn the hash function of each modal.In the testing stage,for any sample,the hash feature is generated by learned hash function,and another modal datum related to its semantics is retrieved from the database.Experiments on three public datasets verify the effectiveness of HFCL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1