P. Vianco, A. Kilgo, B. McKenzie, S. Williams, R. Ferrizz, Curtis Co
{"title":"Ag-Pd-Pt厚膜金属化SAC305焊点的力学性能和界面微观结构:第一部分——加工效果","authors":"P. Vianco, A. Kilgo, B. McKenzie, S. Williams, R. Ferrizz, Curtis Co","doi":"10.4071/imaps.1435232","DOIUrl":null,"url":null,"abstract":"\n The processibility was document for interconnections made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and an Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. Microanalysis techniques documented the corresponding microstructures. Excellent solderability was observed across the process parameters defined by the soldering temperatures of 240–290°C and soldering times of 15–120 s. Molten SAC305 solder dissolved the Ag-Pd-Pt thick film, leading to the precipitation of Ag (trace of Pd) and (Pd, Pt)xSny intermetallic compound (IMC) particles upon solidification. The mechanical strengths of the solder joints were excellent (10–15 N) and remained largely insensitive to the processing conditions. The failure mode was ductile fracture in the solder. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnection system had the necessary process window for use in high reliability, hybrid microcircuit (HMC) applications.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties and Interface Microstructure of SAC305 Solder Joints Made to an Ag-Pd-Pt Thick Film Metallization: Part 1—Processing Effects\",\"authors\":\"P. Vianco, A. Kilgo, B. McKenzie, S. Williams, R. Ferrizz, Curtis Co\",\"doi\":\"10.4071/imaps.1435232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The processibility was document for interconnections made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and an Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. Microanalysis techniques documented the corresponding microstructures. Excellent solderability was observed across the process parameters defined by the soldering temperatures of 240–290°C and soldering times of 15–120 s. Molten SAC305 solder dissolved the Ag-Pd-Pt thick film, leading to the precipitation of Ag (trace of Pd) and (Pd, Pt)xSny intermetallic compound (IMC) particles upon solidification. The mechanical strengths of the solder joints were excellent (10–15 N) and remained largely insensitive to the processing conditions. The failure mode was ductile fracture in the solder. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnection system had the necessary process window for use in high reliability, hybrid microcircuit (HMC) applications.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.1435232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.1435232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Mechanical Properties and Interface Microstructure of SAC305 Solder Joints Made to an Ag-Pd-Pt Thick Film Metallization: Part 1—Processing Effects
The processibility was document for interconnections made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and an Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. Microanalysis techniques documented the corresponding microstructures. Excellent solderability was observed across the process parameters defined by the soldering temperatures of 240–290°C and soldering times of 15–120 s. Molten SAC305 solder dissolved the Ag-Pd-Pt thick film, leading to the precipitation of Ag (trace of Pd) and (Pd, Pt)xSny intermetallic compound (IMC) particles upon solidification. The mechanical strengths of the solder joints were excellent (10–15 N) and remained largely insensitive to the processing conditions. The failure mode was ductile fracture in the solder. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnection system had the necessary process window for use in high reliability, hybrid microcircuit (HMC) applications.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.