{"title":"基于ppp的GNSS天顶对流层延迟评估","authors":"M. Abdelazeem, A. El-Rabbany","doi":"10.2478/arsa-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract This study assesses the precision of zenith tropospheric delay (ZTD) obtained through triple-constellation global navigation satellite system (GNSS) precise point positioning (PPP). Various ZTD estimates are obtained as by-products from GPS-only, GPS/Galileo, GPS/BeiDou, and triple-constellation GPS/Galileo/BeiDou PPP solutions. Triple-constellation GNSS observations from a number of globally distributed reference stations are processed over a period of seven days in order to investigate the daily performance of the ZTD estimates. The estimated ZTDs are then validated by comparing them with the International GNSS Service (IGS) tropospheric products and the University of New Brunswick (UNB3m) model counterparts. It is shown that the ZTD estimates agree with the IGS counterparts with a maximum standard deviation (STD) of 2.4 cm. It is also shown that the precision of estimated ZTD from the GPS/Galileo and GPS/Galileo/BeiDou PPP solutions is improved by about 4.5 and 14%, respectively, with respect to the GPS-only PPP solution. Moreover, it is found that the estimated ZTD agrees with the UNB3m model with a maximum STD of 3.1 cm. Furthermore, the GPS/Galileo and GPS/Galileo/BeiDou PPP enhance the precision of the ZTD estimates by about 6.5 and 10%, respectively, in comparison with the GPS-only PPP solution.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of GNSS PPP-Based Zenith Tropospheric Delay\",\"authors\":\"M. Abdelazeem, A. El-Rabbany\",\"doi\":\"10.2478/arsa-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study assesses the precision of zenith tropospheric delay (ZTD) obtained through triple-constellation global navigation satellite system (GNSS) precise point positioning (PPP). Various ZTD estimates are obtained as by-products from GPS-only, GPS/Galileo, GPS/BeiDou, and triple-constellation GPS/Galileo/BeiDou PPP solutions. Triple-constellation GNSS observations from a number of globally distributed reference stations are processed over a period of seven days in order to investigate the daily performance of the ZTD estimates. The estimated ZTDs are then validated by comparing them with the International GNSS Service (IGS) tropospheric products and the University of New Brunswick (UNB3m) model counterparts. It is shown that the ZTD estimates agree with the IGS counterparts with a maximum standard deviation (STD) of 2.4 cm. It is also shown that the precision of estimated ZTD from the GPS/Galileo and GPS/Galileo/BeiDou PPP solutions is improved by about 4.5 and 14%, respectively, with respect to the GPS-only PPP solution. Moreover, it is found that the estimated ZTD agrees with the UNB3m model with a maximum STD of 3.1 cm. Furthermore, the GPS/Galileo and GPS/Galileo/BeiDou PPP enhance the precision of the ZTD estimates by about 6.5 and 10%, respectively, in comparison with the GPS-only PPP solution.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2020-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Assessment of GNSS PPP-Based Zenith Tropospheric Delay
Abstract This study assesses the precision of zenith tropospheric delay (ZTD) obtained through triple-constellation global navigation satellite system (GNSS) precise point positioning (PPP). Various ZTD estimates are obtained as by-products from GPS-only, GPS/Galileo, GPS/BeiDou, and triple-constellation GPS/Galileo/BeiDou PPP solutions. Triple-constellation GNSS observations from a number of globally distributed reference stations are processed over a period of seven days in order to investigate the daily performance of the ZTD estimates. The estimated ZTDs are then validated by comparing them with the International GNSS Service (IGS) tropospheric products and the University of New Brunswick (UNB3m) model counterparts. It is shown that the ZTD estimates agree with the IGS counterparts with a maximum standard deviation (STD) of 2.4 cm. It is also shown that the precision of estimated ZTD from the GPS/Galileo and GPS/Galileo/BeiDou PPP solutions is improved by about 4.5 and 14%, respectively, with respect to the GPS-only PPP solution. Moreover, it is found that the estimated ZTD agrees with the UNB3m model with a maximum STD of 3.1 cm. Furthermore, the GPS/Galileo and GPS/Galileo/BeiDou PPP enhance the precision of the ZTD estimates by about 6.5 and 10%, respectively, in comparison with the GPS-only PPP solution.