采用不同信号选择方法的伪距多径抑制优化技术

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS Artificial Satellites-Journal of Planetary Geodesy Pub Date : 2020-06-01 DOI:10.2478/arsa-2020-0006
Valanon Uaratanawong, C. Satirapod, T. Tsujii
{"title":"采用不同信号选择方法的伪距多径抑制优化技术","authors":"Valanon Uaratanawong, C. Satirapod, T. Tsujii","doi":"10.2478/arsa-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, the use of multi-Global Navigation Satellite System (GNSS) has improved positioning accuracy in autonomous driving, navigation and tracking systems utilized by general users. However, signal quality in urban areas is degraded by poor satellite geometry and severe multipath errors, which may disturb up to a hundred-meter-ranging error as a consequence. In this study, the performance of several satellite selection methods in multipath mitigation was evaluated, based on the concept that better quality signals and more accurate solutions will be obtained, the more multipath signals can be excluded. Three methods were performed and compared: 1) azimuth-dependent elevation mask based on fisheye image technique, 2) receiver autonomous integrity monitoring (RAIM), and 3) signal-to-noise ratio (SNR) mask in the SPP method. To examine the effect of the satellite selection methods on multipath error, the static test (single-point positioning (SPP) in real-time 1 Hz test) was performed in a multipath environment. The preliminary results showed a possible impact on improving the horizontal positioning accuracy of SPP. Among the three techniques assessed in this study, the results indicated that the SNR mask set at 36 dB-Hz in every elevation showed the most promising result. The SNR mask method could improve positioning accuracy by up to 46.80% compared to the SPP method.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization Technique for Pseudorange Multipath Mitigation Using Different Signal Selection Methods\",\"authors\":\"Valanon Uaratanawong, C. Satirapod, T. Tsujii\",\"doi\":\"10.2478/arsa-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nowadays, the use of multi-Global Navigation Satellite System (GNSS) has improved positioning accuracy in autonomous driving, navigation and tracking systems utilized by general users. However, signal quality in urban areas is degraded by poor satellite geometry and severe multipath errors, which may disturb up to a hundred-meter-ranging error as a consequence. In this study, the performance of several satellite selection methods in multipath mitigation was evaluated, based on the concept that better quality signals and more accurate solutions will be obtained, the more multipath signals can be excluded. Three methods were performed and compared: 1) azimuth-dependent elevation mask based on fisheye image technique, 2) receiver autonomous integrity monitoring (RAIM), and 3) signal-to-noise ratio (SNR) mask in the SPP method. To examine the effect of the satellite selection methods on multipath error, the static test (single-point positioning (SPP) in real-time 1 Hz test) was performed in a multipath environment. The preliminary results showed a possible impact on improving the horizontal positioning accuracy of SPP. Among the three techniques assessed in this study, the results indicated that the SNR mask set at 36 dB-Hz in every elevation showed the most promising result. The SNR mask method could improve positioning accuracy by up to 46.80% compared to the SPP method.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要如今,多全球导航卫星系统(GNSS)的使用提高了普通用户使用的自动驾驶、导航和跟踪系统的定位精度。然而,由于卫星几何形状差和严重的多径误差,城市地区的信号质量会降低,这可能会干扰高达百米的测距误差。在这项研究中,评估了几种卫星选择方法在多径抑制中的性能,基于这样的概念,即越能排除更多的多径信号,就可以获得更好的质量和更准确的解。执行并比较了三种方法:1)基于鱼眼图像技术的方位相关仰角掩模,2)接收机自主完整性监测(RAIM),以及3)SPP方法中的信噪比(SNR)掩模。为了检验卫星选择方法对多径误差的影响,在多径环境中进行了静态测试(实时1Hz测试中的单点定位(SPP))。初步结果表明,这可能会对提高SPP的水平定位精度产生影响。在本研究评估的三种技术中,结果表明,在每个高程设置为36 dB Hz的SNR掩模显示出最有希望的结果。与SPP方法相比,SNR掩模方法可以将定位精度提高46.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization Technique for Pseudorange Multipath Mitigation Using Different Signal Selection Methods
Abstract Nowadays, the use of multi-Global Navigation Satellite System (GNSS) has improved positioning accuracy in autonomous driving, navigation and tracking systems utilized by general users. However, signal quality in urban areas is degraded by poor satellite geometry and severe multipath errors, which may disturb up to a hundred-meter-ranging error as a consequence. In this study, the performance of several satellite selection methods in multipath mitigation was evaluated, based on the concept that better quality signals and more accurate solutions will be obtained, the more multipath signals can be excluded. Three methods were performed and compared: 1) azimuth-dependent elevation mask based on fisheye image technique, 2) receiver autonomous integrity monitoring (RAIM), and 3) signal-to-noise ratio (SNR) mask in the SPP method. To examine the effect of the satellite selection methods on multipath error, the static test (single-point positioning (SPP) in real-time 1 Hz test) was performed in a multipath environment. The preliminary results showed a possible impact on improving the horizontal positioning accuracy of SPP. Among the three techniques assessed in this study, the results indicated that the SNR mask set at 36 dB-Hz in every elevation showed the most promising result. The SNR mask method could improve positioning accuracy by up to 46.80% compared to the SPP method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
期刊最新文献
Similarities and Differences in the Earth’s Water Variations Signal Provided by Grace and AMSR-E Observations Using Maximum Covariance Analysis at Various Land Cover Data Backgrounds Medium- and Long-Term Prediction of Polar Motion Using Weighted Least Squares Extrapolation and Vector Autoregressive Modeling Study on Secular Change of the Earth’s Rotation Rate Based on Solar Eclipse Observation Records on October 13, 443 BC Interstellar Probe: Science, Engineering, Logistic, Economic, and Social Factors Geodynamic Studies in the Pieniny Klippen Belt in 2004–2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1