Mark C. Urban, Christopher P. Nadeau, Sean T. Giery
{"title":"利用机制见解预测气候引起的一种关键水生捕食者的扩张","authors":"Mark C. Urban, Christopher P. Nadeau, Sean T. Giery","doi":"10.1002/ecm.1575","DOIUrl":null,"url":null,"abstract":"<p>Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long-term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate-based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field-collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate-only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site-specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade-off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate-boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using mechanistic insights to predict the climate-induced expansion of a key aquatic predator\",\"authors\":\"Mark C. Urban, Christopher P. Nadeau, Sean T. Giery\",\"doi\":\"10.1002/ecm.1575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long-term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate-based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field-collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate-only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site-specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade-off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate-boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 3\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1575\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1575","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Using mechanistic insights to predict the climate-induced expansion of a key aquatic predator
Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long-term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate-based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field-collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate-only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site-specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade-off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate-boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.