优化p块金属硫化物中硫还原电催化的p电荷

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2023-02-02 DOI:10.1038/s41929-023-00912-9
Wuxing Hua, Tongxin Shang, Huan Li, Yafei Sun, Yong Guo, Jingyi Xia, Chuannan Geng, Zhonghao Hu, Linkai Peng, Zhiyuan Han, Chen Zhang, Wei Lv, Ying Wan
{"title":"优化p块金属硫化物中硫还原电催化的p电荷","authors":"Wuxing Hua, Tongxin Shang, Huan Li, Yafei Sun, Yong Guo, Jingyi Xia, Chuannan Geng, Zhonghao Hu, Linkai Peng, Zhiyuan Han, Chen Zhang, Wei Lv, Ying Wan","doi":"10.1038/s41929-023-00912-9","DOIUrl":null,"url":null,"abstract":"Understanding sulfur conversion chemistry is key to the development of sulfur-based high-energy-density batteries. However, unclear relationships between the electronic structure of the catalyst and its activity are the major problem. Here, we provide a direct correlation between the p electron gain of S in p-block metal sulfides and the apparent activation energies (Ea) for the sulfur reduction reaction (SRR), in particular, Li2Sn to Li2S conversion, which is the rate-determining step of the SRR. The maximum p charge occurs in bismuth sulfide and results in the lowest Ea and a high SRR rate in the cathode. Li–S batteries with the Bi2S3 catalyst work steadily at a high rate of 5.0C with a high-capacity retention of ~85% after 500 cycles. A high areal capacity of ~21.9 mAh cm−2 was obtained under a high sulfur loading of 17.6 mg cm−2 but a low electrolyte/sulfur ratio of 7.5 μl mg−1. Lithium–sulfur batteries are promising energy storage devices where catalysis can play an important role, but developing design principles for optimal performance remains a challenge. Now, a series of p-block metal sulfide cathodes are evaluated, revealing a direct correlation between the p electron gain of sulfur in the sulfide material and the apparent activation energy for the sulfur reduction reaction.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis\",\"authors\":\"Wuxing Hua, Tongxin Shang, Huan Li, Yafei Sun, Yong Guo, Jingyi Xia, Chuannan Geng, Zhonghao Hu, Linkai Peng, Zhiyuan Han, Chen Zhang, Wei Lv, Ying Wan\",\"doi\":\"10.1038/s41929-023-00912-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding sulfur conversion chemistry is key to the development of sulfur-based high-energy-density batteries. However, unclear relationships between the electronic structure of the catalyst and its activity are the major problem. Here, we provide a direct correlation between the p electron gain of S in p-block metal sulfides and the apparent activation energies (Ea) for the sulfur reduction reaction (SRR), in particular, Li2Sn to Li2S conversion, which is the rate-determining step of the SRR. The maximum p charge occurs in bismuth sulfide and results in the lowest Ea and a high SRR rate in the cathode. Li–S batteries with the Bi2S3 catalyst work steadily at a high rate of 5.0C with a high-capacity retention of ~85% after 500 cycles. A high areal capacity of ~21.9 mAh cm−2 was obtained under a high sulfur loading of 17.6 mg cm−2 but a low electrolyte/sulfur ratio of 7.5 μl mg−1. Lithium–sulfur batteries are promising energy storage devices where catalysis can play an important role, but developing design principles for optimal performance remains a challenge. Now, a series of p-block metal sulfide cathodes are evaluated, revealing a direct correlation between the p electron gain of sulfur in the sulfide material and the apparent activation energy for the sulfur reduction reaction.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-023-00912-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-023-00912-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 13

摘要

了解硫转化化学是开发硫基高能量密度电池的关键。然而,催化剂的电子结构与其活性之间的关系不明确是一个主要问题。在这里,我们提供了 p 嵌段金属硫化物中 S 的 p 电子增益与硫还原反应(SRR)表观活化能(Ea)之间的直接相关性,特别是 Li2Sn 到 Li2S 的转化,这是 SRR 的决定性步骤。硫化铋中的 p 电荷最大,因此 Ea 最低,阴极的 SRR 速率较高。使用 Bi2S3 催化剂的锂-S 电池能在 5.0C 的高速率下稳定工作,循环 500 次后仍能保持约 85% 的高容量。在 17.6 mg cm-2 的高硫负荷和 7.5 μl mg-1 的低电解质/硫比率条件下,获得了约 21.9 mAh cm-2 的高电容。锂硫电池是一种前景广阔的储能设备,催化在其中可以发挥重要作用,但要开发出性能最优的设计原理仍是一项挑战。现在,我们对一系列对嵌段金属硫化物阴极进行了评估,发现硫化物材料中硫的对电子增益与硫还原反应的表观活化能之间存在直接关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis
Understanding sulfur conversion chemistry is key to the development of sulfur-based high-energy-density batteries. However, unclear relationships between the electronic structure of the catalyst and its activity are the major problem. Here, we provide a direct correlation between the p electron gain of S in p-block metal sulfides and the apparent activation energies (Ea) for the sulfur reduction reaction (SRR), in particular, Li2Sn to Li2S conversion, which is the rate-determining step of the SRR. The maximum p charge occurs in bismuth sulfide and results in the lowest Ea and a high SRR rate in the cathode. Li–S batteries with the Bi2S3 catalyst work steadily at a high rate of 5.0C with a high-capacity retention of ~85% after 500 cycles. A high areal capacity of ~21.9 mAh cm−2 was obtained under a high sulfur loading of 17.6 mg cm−2 but a low electrolyte/sulfur ratio of 7.5 μl mg−1. Lithium–sulfur batteries are promising energy storage devices where catalysis can play an important role, but developing design principles for optimal performance remains a challenge. Now, a series of p-block metal sulfide cathodes are evaluated, revealing a direct correlation between the p electron gain of sulfur in the sulfide material and the apparent activation energy for the sulfur reduction reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol Enantioselective Chan–Lam S-arylation of sulfenamides The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1