Zhe Liu, Yun Li, L. Yao, Xiaojun Chang, Wei Fang, Xiaojun Wu, Yi Yang
{"title":"具有可行性和情境依赖性的开放世界组合零射击学习简单原语","authors":"Zhe Liu, Yun Li, L. Yao, Xiaojun Chang, Wei Fang, Xiaojun Wu, Yi Yang","doi":"10.48550/arXiv.2211.02895","DOIUrl":null,"url":null,"abstract":"The task of Open-World Compositional Zero-Shot Learning (OW-CZSL) is to recognize novel state-object compositions in images from all possible compositions, where the novel compositions are absent during the training stage. The performance of conventional methods degrades significantly due to the large cardinality of possible compositions. Some recent works consider simple primitives (i.e., states and objects) independent and separately predict them to reduce cardinality. However, it ignores the heavy dependence between states, objects, and compositions. In this paper, we model the dependence via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility of compositions, e.g., hairy is more feasible with cat than with building in the real world. Contextuality-dependence represents the contextual variance in images, e.g., cat shows diverse appearances when it is dry or wet. We design Semantic Attention (SA) to capture the feasibility semantics to alleviate impossible predictions, driven by the visual similarity between simple primitives. We also propose a generative Knowledge Disentanglement (KD) to disentangle images into unbiased representations, easing the contextual bias. Moreover, we complement the independent compositional probability model with the learned feasibility and contextuality compatibly. In the experiments, we demonstrate our superior or competitive performance, SA-and-kD-guided Simple Primitives (SAD-SP), on three benchmark datasets.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple Primitives with Feasibility- and Contextuality-Dependence for Open-World Compositional Zero-shot Learning\",\"authors\":\"Zhe Liu, Yun Li, L. Yao, Xiaojun Chang, Wei Fang, Xiaojun Wu, Yi Yang\",\"doi\":\"10.48550/arXiv.2211.02895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of Open-World Compositional Zero-Shot Learning (OW-CZSL) is to recognize novel state-object compositions in images from all possible compositions, where the novel compositions are absent during the training stage. The performance of conventional methods degrades significantly due to the large cardinality of possible compositions. Some recent works consider simple primitives (i.e., states and objects) independent and separately predict them to reduce cardinality. However, it ignores the heavy dependence between states, objects, and compositions. In this paper, we model the dependence via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility of compositions, e.g., hairy is more feasible with cat than with building in the real world. Contextuality-dependence represents the contextual variance in images, e.g., cat shows diverse appearances when it is dry or wet. We design Semantic Attention (SA) to capture the feasibility semantics to alleviate impossible predictions, driven by the visual similarity between simple primitives. We also propose a generative Knowledge Disentanglement (KD) to disentangle images into unbiased representations, easing the contextual bias. Moreover, we complement the independent compositional probability model with the learned feasibility and contextuality compatibly. In the experiments, we demonstrate our superior or competitive performance, SA-and-kD-guided Simple Primitives (SAD-SP), on three benchmark datasets.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.02895\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.02895","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Simple Primitives with Feasibility- and Contextuality-Dependence for Open-World Compositional Zero-shot Learning
The task of Open-World Compositional Zero-Shot Learning (OW-CZSL) is to recognize novel state-object compositions in images from all possible compositions, where the novel compositions are absent during the training stage. The performance of conventional methods degrades significantly due to the large cardinality of possible compositions. Some recent works consider simple primitives (i.e., states and objects) independent and separately predict them to reduce cardinality. However, it ignores the heavy dependence between states, objects, and compositions. In this paper, we model the dependence via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility of compositions, e.g., hairy is more feasible with cat than with building in the real world. Contextuality-dependence represents the contextual variance in images, e.g., cat shows diverse appearances when it is dry or wet. We design Semantic Attention (SA) to capture the feasibility semantics to alleviate impossible predictions, driven by the visual similarity between simple primitives. We also propose a generative Knowledge Disentanglement (KD) to disentangle images into unbiased representations, easing the contextual bias. Moreover, we complement the independent compositional probability model with the learned feasibility and contextuality compatibly. In the experiments, we demonstrate our superior or competitive performance, SA-and-kD-guided Simple Primitives (SAD-SP), on three benchmark datasets.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.