José L. Hierro, Özkan Eren, Jan Čuda, Laura A. Meyerson
{"title":"竞争能力增强的进化可能解释了引进物种在原始群落中的优势","authors":"José L. Hierro, Özkan Eren, Jan Čuda, Laura A. Meyerson","doi":"10.1002/ecm.1524","DOIUrl":null,"url":null,"abstract":"<p>The evolution of increased competitive ability (EICA) hypothesis encapsulates the importance of evolution and ecology for biological invasions. According to this proposition, leaving specialist herbivores at home frees introduced plant species from investing limited resources in defense to instead use those resources for growth, selecting for individuals with reduced defense, enhanced growth, and, consequently, increased competitive ability. We took a multispecies approach, including ancestral and non-native populations of seven weeds, as well as seven coexisting local weeds, to explore all three predictions (i.e., lower defense, greater growth, and better ability to compete in non-native than ancestral populations), the generality as an invasion mechanism for a given system, and community-level consequences of EICA. We assessed plant defenses by conducting herbivory trials with a generalist herbivore. Therefore, finding that non-native populations are better defended than ancestral populations would lend support to the shifting defense (SD) hypothesis, an extension of EICA that incorporates the observation that introduced species escape specialists, but encounter generalists. We also manipulated water additions to evaluate how resource availability influences competition in the context of EICA and plant plasticity in our semiarid system. We found that non-native populations of one study species, <i>Centaurea solstitialis</i>, were better defended, grew faster, and exerted stronger suppression on locals than ancestral populations, offering support to EICA through the SD hypothesis. The other species also displayed variation in trait attributes between ancestral and non-native populations, but they did not fully comply with the three predictions of EICA. Notably, differences between those populations generally favored the non-natives. Moreover, non-native populations were, overall, superior at suppressing locals relative to ancestral populations under low water conditions. There were no differences in plasticity among all three groups. These results suggest that evolutionary change between ancestral and non-native populations is widespread and could have facilitated invasion in our system. Additionally, although trading growth for shifted defense does not seem to be the main operational path for evolutionary change, it may explain the dominance of some introduced species in ruderal communities. Because introduced species dominate communities in disturbed environments around the world, our results are likely generalizable to other systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolution of increased competitive ability may explain dominance of introduced species in ruderal communities\",\"authors\":\"José L. Hierro, Özkan Eren, Jan Čuda, Laura A. Meyerson\",\"doi\":\"10.1002/ecm.1524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolution of increased competitive ability (EICA) hypothesis encapsulates the importance of evolution and ecology for biological invasions. According to this proposition, leaving specialist herbivores at home frees introduced plant species from investing limited resources in defense to instead use those resources for growth, selecting for individuals with reduced defense, enhanced growth, and, consequently, increased competitive ability. We took a multispecies approach, including ancestral and non-native populations of seven weeds, as well as seven coexisting local weeds, to explore all three predictions (i.e., lower defense, greater growth, and better ability to compete in non-native than ancestral populations), the generality as an invasion mechanism for a given system, and community-level consequences of EICA. We assessed plant defenses by conducting herbivory trials with a generalist herbivore. Therefore, finding that non-native populations are better defended than ancestral populations would lend support to the shifting defense (SD) hypothesis, an extension of EICA that incorporates the observation that introduced species escape specialists, but encounter generalists. We also manipulated water additions to evaluate how resource availability influences competition in the context of EICA and plant plasticity in our semiarid system. We found that non-native populations of one study species, <i>Centaurea solstitialis</i>, were better defended, grew faster, and exerted stronger suppression on locals than ancestral populations, offering support to EICA through the SD hypothesis. The other species also displayed variation in trait attributes between ancestral and non-native populations, but they did not fully comply with the three predictions of EICA. Notably, differences between those populations generally favored the non-natives. Moreover, non-native populations were, overall, superior at suppressing locals relative to ancestral populations under low water conditions. There were no differences in plasticity among all three groups. These results suggest that evolutionary change between ancestral and non-native populations is widespread and could have facilitated invasion in our system. Additionally, although trading growth for shifted defense does not seem to be the main operational path for evolutionary change, it may explain the dominance of some introduced species in ruderal communities. Because introduced species dominate communities in disturbed environments around the world, our results are likely generalizable to other systems.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"92 3\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1524\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1524","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Evolution of increased competitive ability may explain dominance of introduced species in ruderal communities
The evolution of increased competitive ability (EICA) hypothesis encapsulates the importance of evolution and ecology for biological invasions. According to this proposition, leaving specialist herbivores at home frees introduced plant species from investing limited resources in defense to instead use those resources for growth, selecting for individuals with reduced defense, enhanced growth, and, consequently, increased competitive ability. We took a multispecies approach, including ancestral and non-native populations of seven weeds, as well as seven coexisting local weeds, to explore all three predictions (i.e., lower defense, greater growth, and better ability to compete in non-native than ancestral populations), the generality as an invasion mechanism for a given system, and community-level consequences of EICA. We assessed plant defenses by conducting herbivory trials with a generalist herbivore. Therefore, finding that non-native populations are better defended than ancestral populations would lend support to the shifting defense (SD) hypothesis, an extension of EICA that incorporates the observation that introduced species escape specialists, but encounter generalists. We also manipulated water additions to evaluate how resource availability influences competition in the context of EICA and plant plasticity in our semiarid system. We found that non-native populations of one study species, Centaurea solstitialis, were better defended, grew faster, and exerted stronger suppression on locals than ancestral populations, offering support to EICA through the SD hypothesis. The other species also displayed variation in trait attributes between ancestral and non-native populations, but they did not fully comply with the three predictions of EICA. Notably, differences between those populations generally favored the non-natives. Moreover, non-native populations were, overall, superior at suppressing locals relative to ancestral populations under low water conditions. There were no differences in plasticity among all three groups. These results suggest that evolutionary change between ancestral and non-native populations is widespread and could have facilitated invasion in our system. Additionally, although trading growth for shifted defense does not seem to be the main operational path for evolutionary change, it may explain the dominance of some introduced species in ruderal communities. Because introduced species dominate communities in disturbed environments around the world, our results are likely generalizable to other systems.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.