{"title":"使用大型机器人3D打印技术制造拓扑优化的树状展馆","authors":"D. Bao, Xin Yan, Y. Xie","doi":"10.20898/j.iass.2022.009","DOIUrl":null,"url":null,"abstract":"This research addresses innovations in building structural components through the generative design technique Bi-directional Evolutionary Structural Optimization (BESO) and the application of large-scale 3D robotic printing to produce efficient and elegant spatial structures. The innovative pavilion discussed in this paper demonstrates a design process and the ambitions of the research group through a full-scale model of large-span spatial structures. The focus of this work is the use of a modified BESO technique to optimize the structure, which features branches of various sizes and then applies 'skin' surfaces according to the direction of the main structure. The innovative production, construction, and assembling methodologies are to replace welded ultimately, forged, and cast components with large robotic 3D printed components and bolting methods. The advantages of the new design and construction process are less labor, fewer joints, shorter assembling time, lower cost & more efficient material usage and more complex & elegant large structural form.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fabricating Topologically Optimized Tree-Like Pavilions Using Large-Scale Robotic 3D Printing Techniques\",\"authors\":\"D. Bao, Xin Yan, Y. Xie\",\"doi\":\"10.20898/j.iass.2022.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research addresses innovations in building structural components through the generative design technique Bi-directional Evolutionary Structural Optimization (BESO) and the application of large-scale 3D robotic printing to produce efficient and elegant spatial structures. The innovative pavilion discussed in this paper demonstrates a design process and the ambitions of the research group through a full-scale model of large-span spatial structures. The focus of this work is the use of a modified BESO technique to optimize the structure, which features branches of various sizes and then applies 'skin' surfaces according to the direction of the main structure. The innovative production, construction, and assembling methodologies are to replace welded ultimately, forged, and cast components with large robotic 3D printed components and bolting methods. The advantages of the new design and construction process are less labor, fewer joints, shorter assembling time, lower cost & more efficient material usage and more complex & elegant large structural form.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2022.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2022.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Fabricating Topologically Optimized Tree-Like Pavilions Using Large-Scale Robotic 3D Printing Techniques
This research addresses innovations in building structural components through the generative design technique Bi-directional Evolutionary Structural Optimization (BESO) and the application of large-scale 3D robotic printing to produce efficient and elegant spatial structures. The innovative pavilion discussed in this paper demonstrates a design process and the ambitions of the research group through a full-scale model of large-span spatial structures. The focus of this work is the use of a modified BESO technique to optimize the structure, which features branches of various sizes and then applies 'skin' surfaces according to the direction of the main structure. The innovative production, construction, and assembling methodologies are to replace welded ultimately, forged, and cast components with large robotic 3D printed components and bolting methods. The advantages of the new design and construction process are less labor, fewer joints, shorter assembling time, lower cost & more efficient material usage and more complex & elegant large structural form.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.