纳米级三维制造技术综述

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES Autex Research Journal Pub Date : 2022-06-18 DOI:10.2478/aut-2022-0014
Ke Wang, Qian Ma, Caixin Qu, Hong-Tao Zhou, Miao Cao, Shudong Wang
{"title":"纳米级三维制造技术综述","authors":"Ke Wang, Qian Ma, Caixin Qu, Hong-Tao Zhou, Miao Cao, Shudong Wang","doi":"10.2478/aut-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract Among the different nanostructures that have been demonstrated as promising materials for various applications, three–dimensional (3D) nanostructures have attracted significant attention as building blocks for constructing high-performance nanodevices because of their unusual mechanical, electrical, thermal, optical, and magnetic properties arising from their novel size effects and abundant active catalytic/reactive sites due to the high specific surface area. Considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures for applications, including structural composites, electronics, photonics, biomedical engineering, and energy. This review provides an overview of the nanofabrication strategies that have been developed to fabricate 3D functional architectures with exquisite control over their morphology at the nanoscale. The pros and cons of the typical synthetic methods and experimental protocols are reviewed and outlined. Future challenges of fabrication of 3D nanostructured materials are also discussed to further advance current nanoscience and nanotechnology.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review on 3D Fabrication at Nanoscale\",\"authors\":\"Ke Wang, Qian Ma, Caixin Qu, Hong-Tao Zhou, Miao Cao, Shudong Wang\",\"doi\":\"10.2478/aut-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Among the different nanostructures that have been demonstrated as promising materials for various applications, three–dimensional (3D) nanostructures have attracted significant attention as building blocks for constructing high-performance nanodevices because of their unusual mechanical, electrical, thermal, optical, and magnetic properties arising from their novel size effects and abundant active catalytic/reactive sites due to the high specific surface area. Considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures for applications, including structural composites, electronics, photonics, biomedical engineering, and energy. This review provides an overview of the nanofabrication strategies that have been developed to fabricate 3D functional architectures with exquisite control over their morphology at the nanoscale. The pros and cons of the typical synthetic methods and experimental protocols are reviewed and outlined. Future challenges of fabrication of 3D nanostructured materials are also discussed to further advance current nanoscience and nanotechnology.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2022-0014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2022-0014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 4

摘要

摘要在已被证明是各种应用的有前途的材料的不同纳米结构中,三维(3D)纳米结构由于其不同寻常的机械、电学、热学、光学、,以及由于其高比表面积而产生的新颖的尺寸效应和丰富的活性催化/反应位点所产生的磁性。大量的研究工作致力于设计、制造和评估3D纳米结构的应用,包括结构复合材料、电子、光子学、生物医学工程和能源。这篇综述概述了纳米制造策略,这些策略已被开发用于制造3D功能结构,并在纳米尺度上对其形态进行精细控制。综述了典型的合成方法和实验方案的优缺点。还讨论了3D纳米结构材料制造的未来挑战,以进一步推进当前的纳米科学和纳米技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on 3D Fabrication at Nanoscale
Abstract Among the different nanostructures that have been demonstrated as promising materials for various applications, three–dimensional (3D) nanostructures have attracted significant attention as building blocks for constructing high-performance nanodevices because of their unusual mechanical, electrical, thermal, optical, and magnetic properties arising from their novel size effects and abundant active catalytic/reactive sites due to the high specific surface area. Considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures for applications, including structural composites, electronics, photonics, biomedical engineering, and energy. This review provides an overview of the nanofabrication strategies that have been developed to fabricate 3D functional architectures with exquisite control over their morphology at the nanoscale. The pros and cons of the typical synthetic methods and experimental protocols are reviewed and outlined. Future challenges of fabrication of 3D nanostructured materials are also discussed to further advance current nanoscience and nanotechnology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autex Research Journal
Autex Research Journal MATERIALS SCIENCE, TEXTILES-
CiteScore
2.80
自引率
9.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Only few journals deal with textile research at an international and global level complying with the highest standards. Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence. Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.
期刊最新文献
Development of an emotional response model for hospital gown design using structural equation modeling Preparation and properties of stainless steel filament/pure cotton woven fabric Network modeling of aesthetic effect for Chinese Yue Opera costume simulation images Study on the relationship between structure and moisturizing performance of seamless knitted fabrics of protein fibers for autumn and winter Antibacterial and yellowing performances of sports underwear fabric with polyamide/silver ion polyurethane filaments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1