Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute
{"title":"变形金刚与生物医学背景知识的表示","authors":"Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute","doi":"10.1162/coli_a_00462","DOIUrl":null,"url":null,"abstract":"Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"49 1","pages":"73-115"},"PeriodicalIF":3.7000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Transformers and the Representation of Biomedical Background Knowledge\",\"authors\":\"Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute\",\"doi\":\"10.1162/coli_a_00462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"49 1\",\"pages\":\"73-115\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00462\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00462","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Transformers and the Representation of Biomedical Background Knowledge
Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.