变形金刚与生物医学背景知识的表示

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Linguistics Pub Date : 2022-02-04 DOI:10.1162/coli_a_00462
Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute
{"title":"变形金刚与生物医学背景知识的表示","authors":"Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute","doi":"10.1162/coli_a_00462","DOIUrl":null,"url":null,"abstract":"Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"49 1","pages":"73-115"},"PeriodicalIF":3.7000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Transformers and the Representation of Biomedical Background Knowledge\",\"authors\":\"Oskar Wysocki, Zili Zhou, Paul O'Regan, D. Ferreira, M. Wysocka, Dónal Landers, Andr'e Freitas Department of Computer Science, The University of Manchester, digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cruk Manchester Institute, U. Manchester, Idiap Research Institute\",\"doi\":\"10.1162/coli_a_00462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"49 1\",\"pages\":\"73-115\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00462\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00462","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

摘要

专门的基于变压器的模型(如BioBERT和BioMegatron)适用于基于公开可用的生物医学数据库的生物医学领域。因此,它们具有编码大规模生物知识的潜力。我们研究了这些模型中生物学知识的编码和表示,以及它在支持癌症精准医学推理方面的潜在效用,即基因组改变的临床意义的解释。我们比较了不同变压器基线的性能;我们使用探测来确定不同实体编码的一致性;我们使用聚类方法来比较和对比基因、变异、药物和疾病的嵌入的内部特性。我们表明,这些模型确实编码了生物学知识,尽管其中一些在特定任务的微调中丢失了。最后,我们分析了模型在数据集中的偏差和不平衡方面的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformers and the Representation of Biomedical Background Knowledge
Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
期刊最新文献
Generation and Polynomial Parsing of Graph Languages with Non-Structural Reentrancies Languages through the Looking Glass of BPE Compression Capturing Fine-Grained Regional Differences in Language Use through Voting Precinct Embeddings Machine Learning for Ancient Languages: A Survey Statistical Methods for Annotation Analysis by Silviu Paun, Ron Artstein, and Massimo Poesio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1