磁阻生物传感器的研究进展

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Futures Pub Date : 2023-02-16 DOI:10.1088/2399-1984/acbcb5
Clifton Dey, Parsa Yari, Kai Wu
{"title":"磁阻生物传感器的研究进展","authors":"Clifton Dey, Parsa Yari, Kai Wu","doi":"10.1088/2399-1984/acbcb5","DOIUrl":null,"url":null,"abstract":"Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which are explored and discussed in this article. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent advances in magnetoresistance biosensors: a short review\",\"authors\":\"Clifton Dey, Parsa Yari, Kai Wu\",\"doi\":\"10.1088/2399-1984/acbcb5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which are explored and discussed in this article. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/acbcb5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/acbcb5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

近年来,自旋电子器件及其在生物医学领域的应用得到了发展。自旋电子设备依赖于检测或操纵磁场,生物物质对磁场相对透明。自旋电子设备最近在生物医学领域的应用包括诊断疾病,如癌症和肝硬化、DNA基因分型、定点护理设备和柔性电子设备。到目前为止,生物医学应用中的大多数自旋电子器件可分为三种主流类型:各向异性、巨磁电阻器件和隧道磁阻器件。每种方法都有其优点和缺点,本文对此进行了探讨和讨论。自旋电子学的出现为我们提供了一种新的低功耗、低成本、易于制造的标准CMOS传感器替代品。自旋电子生物传感器的灵敏度一直在稳步发展,预计在未来几年将大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in magnetoresistance biosensors: a short review
Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which are explored and discussed in this article. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Futures
Nano Futures Chemistry-General Chemistry
CiteScore
4.30
自引率
0.00%
发文量
35
期刊介绍: Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.
期刊最新文献
Nanobiohybrids and bacterial carriers: a novel pathway to targeted cancer therapy The use of orthogonal analytical approaches to profile lipid nanoparticle physicochemical attributes Navigating the frontiers of graphene quality control to enable product optimisation and market confidence Overlapping top gate electrodes based on low temperature atomic layer deposition for nanoscale ambipolar lateral junctions Turning CO2 into Sustainable Graphene: A Comprehensive Review of Recent Synthesis Techniques and Developments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1