人为因素对美国亚利桑那州大峡谷国家公园奥芬矿附近霍恩溪流域地下水地球化学的影响

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemistry-Exploration Environment Analysis Pub Date : 2023-07-24 DOI:10.1144/geochem2023-007
Kimberly R. Beisner, Collin Davidson, F. Tillman
{"title":"人为因素对美国亚利桑那州大峡谷国家公园奥芬矿附近霍恩溪流域地下水地球化学的影响","authors":"Kimberly R. Beisner, Collin Davidson, F. Tillman","doi":"10.1144/geochem2023-007","DOIUrl":null,"url":null,"abstract":"Breccia pipe deposits of the Grand Canyon region contain ore grade copper and uranium. Horn Creek is located near the Orphan Mine mineralized breccia pipe deposit and groundwater emerging from the bedrock in the headwaters of Horn Creek has the highest uranium concentrations in the region. Uranium decreases an order of magnitude between the groundwater at the top of the watershed and the groundwater emerging from the alluvial material lower in the watershed. Horn Creek water has low sulfur and uranium isotopic ratios which may suggest interaction with sulfide and uranium minerals found in mineralized breccia pipe deposits. Per- and polyfluoroalkyl substances (PFBA and PFBS) were found in low concentrations in groundwater from the bedrock and may be related to mining process materials or other anthropogenic activities. PHREEQC modeling suggests that water that is elevated in uranium emerging from the bedrock in the upper watershed may mix with other groundwater and atmospheric precipitation infiltrated into the alluvial material in the lower watershed. Tritium is elevated in Horn Creek groundwaters suggesting a component of modern water, some of which may have interacted with Orphan Mine workings. Additional studies could build on this understanding of chemistry changes in waters of Horn Creek to provide more direct evidence of contribution of water moving through the Orphan Mine.\n \n Thematic collection:\n This article is part of the Geochemical processes related to mined, milled, or natural metal deposits collection available at:\n https://www.lyellcollection.org/topic/collections/geochemical-processes-related-to-mined-milled-or-natural-metal-deposits\n \n \n Supplementary material:\n https://doi.org/10.6084/m9.figshare.c.6747638\n","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic influence on groundwater geochemistry in Horn Creek Watershed near the Orphan Mine in Grand Canyon National Park, Arizona, USA\",\"authors\":\"Kimberly R. Beisner, Collin Davidson, F. Tillman\",\"doi\":\"10.1144/geochem2023-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breccia pipe deposits of the Grand Canyon region contain ore grade copper and uranium. Horn Creek is located near the Orphan Mine mineralized breccia pipe deposit and groundwater emerging from the bedrock in the headwaters of Horn Creek has the highest uranium concentrations in the region. Uranium decreases an order of magnitude between the groundwater at the top of the watershed and the groundwater emerging from the alluvial material lower in the watershed. Horn Creek water has low sulfur and uranium isotopic ratios which may suggest interaction with sulfide and uranium minerals found in mineralized breccia pipe deposits. Per- and polyfluoroalkyl substances (PFBA and PFBS) were found in low concentrations in groundwater from the bedrock and may be related to mining process materials or other anthropogenic activities. PHREEQC modeling suggests that water that is elevated in uranium emerging from the bedrock in the upper watershed may mix with other groundwater and atmospheric precipitation infiltrated into the alluvial material in the lower watershed. Tritium is elevated in Horn Creek groundwaters suggesting a component of modern water, some of which may have interacted with Orphan Mine workings. Additional studies could build on this understanding of chemistry changes in waters of Horn Creek to provide more direct evidence of contribution of water moving through the Orphan Mine.\\n \\n Thematic collection:\\n This article is part of the Geochemical processes related to mined, milled, or natural metal deposits collection available at:\\n https://www.lyellcollection.org/topic/collections/geochemical-processes-related-to-mined-milled-or-natural-metal-deposits\\n \\n \\n Supplementary material:\\n https://doi.org/10.6084/m9.figshare.c.6747638\\n\",\"PeriodicalId\":55114,\"journal\":{\"name\":\"Geochemistry-Exploration Environment Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry-Exploration Environment Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/geochem2023-007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2023-007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大峡谷地区的角砾岩管道矿床含有矿石级铜和铀。Horn Creek位于Orphan矿矿化角砾岩矿床附近,从Horn Crew源头基岩中流出的地下水具有该地区最高的铀浓度。铀在分水岭顶部的地下水和分水岭下部冲积物中出现的地下水之间降低了一个数量级。Horn Creek水的硫和铀同位素比例较低,这可能表明它与矿化角砾岩管道矿床中发现的硫化物和铀矿物相互作用。全氟烷基和多氟烷基物质(PFBA和PFBS)在基岩地下水中的浓度较低,可能与采矿工艺材料或其他人类活动有关。PHREEQC模型表明,从上游流域基岩中排出的铀含量升高的水可能与渗透到下游流域冲积物中的其他地下水和大气降水混合。Horn Creek地下水中的氚含量升高,这表明它是现代水的一部分,其中一些可能与Orphan矿山的工作相互作用。更多的研究可以建立在对霍恩溪水域化学变化的理解之上,以提供更直接的证据来证明流经奥芬矿的水的贡献。专题收藏:本文是与开采、研磨或天然金属矿床相关的地球化学过程的一部分,可在以下网站获取:https://www.lyellcollection.org/topic/collections/geochemical-processes-related-to-mined-milled-or-natural-metal-deposits补充材料:https://doi.org/10.6084/m9.figshare.c.6747638
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anthropogenic influence on groundwater geochemistry in Horn Creek Watershed near the Orphan Mine in Grand Canyon National Park, Arizona, USA
Breccia pipe deposits of the Grand Canyon region contain ore grade copper and uranium. Horn Creek is located near the Orphan Mine mineralized breccia pipe deposit and groundwater emerging from the bedrock in the headwaters of Horn Creek has the highest uranium concentrations in the region. Uranium decreases an order of magnitude between the groundwater at the top of the watershed and the groundwater emerging from the alluvial material lower in the watershed. Horn Creek water has low sulfur and uranium isotopic ratios which may suggest interaction with sulfide and uranium minerals found in mineralized breccia pipe deposits. Per- and polyfluoroalkyl substances (PFBA and PFBS) were found in low concentrations in groundwater from the bedrock and may be related to mining process materials or other anthropogenic activities. PHREEQC modeling suggests that water that is elevated in uranium emerging from the bedrock in the upper watershed may mix with other groundwater and atmospheric precipitation infiltrated into the alluvial material in the lower watershed. Tritium is elevated in Horn Creek groundwaters suggesting a component of modern water, some of which may have interacted with Orphan Mine workings. Additional studies could build on this understanding of chemistry changes in waters of Horn Creek to provide more direct evidence of contribution of water moving through the Orphan Mine. Thematic collection: This article is part of the Geochemical processes related to mined, milled, or natural metal deposits collection available at: https://www.lyellcollection.org/topic/collections/geochemical-processes-related-to-mined-milled-or-natural-metal-deposits Supplementary material: https://doi.org/10.6084/m9.figshare.c.6747638
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
期刊最新文献
Multi-element geochemical analyses on ultrafine soils in Western Australia - Towards establishing abundance ranges in mineral exploration settings Alteration assemblage characterization using machine learning applied to high resolution drill-core images, hyperspectral data, and geochemistry Silver, cobalt and nickel mineralogy and geochemistry of shale ore in the sediment-hosted stratiform Nowa Sól Cu-Ag deposit, SW Poland Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach Spatial distribution, ecological risk and origin of soil heavy metals in Laoguanhe watershed of the Middle Route of China's South-to-North Water Diversion Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1