Hiasmim Rohem Gualberto, João Marciano Laredo Dos Reis, Mônica Calixto de Andrade, H. Costa, Felipe do Carmo Amorim
{"title":"暴露时间内人工紫外线降解对钢/GRP单搭接接头性能的影响","authors":"Hiasmim Rohem Gualberto, João Marciano Laredo Dos Reis, Mônica Calixto de Andrade, H. Costa, Felipe do Carmo Amorim","doi":"10.1080/00218464.2023.2168536","DOIUrl":null,"url":null,"abstract":"ABSTRACT Metal structures can be repaired with composites using adhesives. However, because it involves polymeric materials, the environmental conditions of the structure can modify the behavior of the material, making its use unfeasible. Ultraviolet radiation (UV) is a degradation agent that has strong action on the polymeric materials, which are present in the adhesives and matrix of composites. In this work, it is studied the behavior of steel/GFRP single-lap joints using epoxy adhesive when exposed to UV radiation for different time intervals, to understand their behavior. The joint behavior was evaluated by shear testing and the adhesive was analyzed by DMA, FTIR and TGA. A decline of up to 32.5% in shear strength was observed with increasing UV exposure time. The Tg of the adhesive also showed a reduction. The FTIR spectra of the adhesive indicated a reduction in peaks related to epoxy functional groups when the exposure time was increased. This revealed degradation of the polymeric chains of the adhesive, a fact that can be associated with the reduction in Tg and the reduction in the shear strength of the joint. Thus, the application of such material in places exposed to UV radiation should consider the poorer performance regarding degradation.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"99 1","pages":"2011 - 2030"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of artificial UV degradation on the performance of steel/GFRP single-lap joints during exposure time\",\"authors\":\"Hiasmim Rohem Gualberto, João Marciano Laredo Dos Reis, Mônica Calixto de Andrade, H. Costa, Felipe do Carmo Amorim\",\"doi\":\"10.1080/00218464.2023.2168536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Metal structures can be repaired with composites using adhesives. However, because it involves polymeric materials, the environmental conditions of the structure can modify the behavior of the material, making its use unfeasible. Ultraviolet radiation (UV) is a degradation agent that has strong action on the polymeric materials, which are present in the adhesives and matrix of composites. In this work, it is studied the behavior of steel/GFRP single-lap joints using epoxy adhesive when exposed to UV radiation for different time intervals, to understand their behavior. The joint behavior was evaluated by shear testing and the adhesive was analyzed by DMA, FTIR and TGA. A decline of up to 32.5% in shear strength was observed with increasing UV exposure time. The Tg of the adhesive also showed a reduction. The FTIR spectra of the adhesive indicated a reduction in peaks related to epoxy functional groups when the exposure time was increased. This revealed degradation of the polymeric chains of the adhesive, a fact that can be associated with the reduction in Tg and the reduction in the shear strength of the joint. Thus, the application of such material in places exposed to UV radiation should consider the poorer performance regarding degradation.\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":\"99 1\",\"pages\":\"2011 - 2030\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2023.2168536\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2168536","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of artificial UV degradation on the performance of steel/GFRP single-lap joints during exposure time
ABSTRACT Metal structures can be repaired with composites using adhesives. However, because it involves polymeric materials, the environmental conditions of the structure can modify the behavior of the material, making its use unfeasible. Ultraviolet radiation (UV) is a degradation agent that has strong action on the polymeric materials, which are present in the adhesives and matrix of composites. In this work, it is studied the behavior of steel/GFRP single-lap joints using epoxy adhesive when exposed to UV radiation for different time intervals, to understand their behavior. The joint behavior was evaluated by shear testing and the adhesive was analyzed by DMA, FTIR and TGA. A decline of up to 32.5% in shear strength was observed with increasing UV exposure time. The Tg of the adhesive also showed a reduction. The FTIR spectra of the adhesive indicated a reduction in peaks related to epoxy functional groups when the exposure time was increased. This revealed degradation of the polymeric chains of the adhesive, a fact that can be associated with the reduction in Tg and the reduction in the shear strength of the joint. Thus, the application of such material in places exposed to UV radiation should consider the poorer performance regarding degradation.
期刊介绍:
The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.