基于近地表临界带结构和阈值行为的岩溶产流模块

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2023-04-24 DOI:10.2166/nh.2023.135
JianFei Zhao, Guofang Li, Yanan Duan, Yiming Hu, Binquan Li, Zhongmin Liang
{"title":"基于近地表临界带结构和阈值行为的岩溶产流模块","authors":"JianFei Zhao, Guofang Li, Yanan Duan, Yiming Hu, Binquan Li, Zhongmin Liang","doi":"10.2166/nh.2023.135","DOIUrl":null,"url":null,"abstract":"\n Hydrological simulation in karst areas is of great importance and challenge. It is a practical way to enhance the performance of existing hydrological models in karst areas by coupling karst modules that represent hydrological processes in these areas. The near-surface critical zone structure affects runoff generation in karst areas significantly and its complex hydrological processes could be simplified with threshold behaviors. This study proposed a three-thresholds-based karst runoff generation module (3T-KRGM), which used three reservoirs to represent water storage in the soil zone, soil–epikarst interface, and epikarst zone. The 3T-KRGM is coupled with Xinanjiang (XAJ) model to extend the applicability of the model to karst areas. Both the improved XAJ model and the original XAJ model were used in the Shibantang watershed, which is a typical karst watershed located in southwest China. The results indicate that the performance of daily discharge simulations was obviously improved by introducing the 3T-KRGM. In addition, both the parameter sensitivity analysis and baseflow simulation demonstrate that the 3T-KRGM is rational in structure. The 3T-KRGM could also be easily coupled into other hydrological models, thus benefiting the hydrological simulation in karst areas.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A karst runoff generation module based on the near-surface critical zone structure and threshold behaviors\",\"authors\":\"JianFei Zhao, Guofang Li, Yanan Duan, Yiming Hu, Binquan Li, Zhongmin Liang\",\"doi\":\"10.2166/nh.2023.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrological simulation in karst areas is of great importance and challenge. It is a practical way to enhance the performance of existing hydrological models in karst areas by coupling karst modules that represent hydrological processes in these areas. The near-surface critical zone structure affects runoff generation in karst areas significantly and its complex hydrological processes could be simplified with threshold behaviors. This study proposed a three-thresholds-based karst runoff generation module (3T-KRGM), which used three reservoirs to represent water storage in the soil zone, soil–epikarst interface, and epikarst zone. The 3T-KRGM is coupled with Xinanjiang (XAJ) model to extend the applicability of the model to karst areas. Both the improved XAJ model and the original XAJ model were used in the Shibantang watershed, which is a typical karst watershed located in southwest China. The results indicate that the performance of daily discharge simulations was obviously improved by introducing the 3T-KRGM. In addition, both the parameter sensitivity analysis and baseflow simulation demonstrate that the 3T-KRGM is rational in structure. The 3T-KRGM could also be easily coupled into other hydrological models, thus benefiting the hydrological simulation in karst areas.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.135\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.135","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

岩溶地区水文模拟具有重要意义和挑战性。通过耦合代表岩溶地区水文过程的岩溶模块,提高岩溶地区现有水文模型的性能是一种实用的方法。近地表临界带结构对岩溶区产流影响显著,其复杂的水文过程可以用阈值行为简化。本研究提出了一个基于三阈值的岩溶径流生成模块(3T-KRGM),该模块使用三个水库来表示土壤带、土壤-表岩溶界面和表岩溶带的蓄水量。将3T-KRGM与新安江(XAJ)模型相结合,扩展了该模型在岩溶地区的适用性。将改进后的XAJ模型和原XAJ模型应用于中国西南地区典型岩溶流域石板塘流域。结果表明,3T-KRGM的引入明显提高了日放电模拟的性能。此外,通过参数灵敏度分析和基流模拟表明,3T-KRGM结构合理。3T-KRGM还可以很容易地耦合到其他水文模型中,从而有利于岩溶地区的水文模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A karst runoff generation module based on the near-surface critical zone structure and threshold behaviors
Hydrological simulation in karst areas is of great importance and challenge. It is a practical way to enhance the performance of existing hydrological models in karst areas by coupling karst modules that represent hydrological processes in these areas. The near-surface critical zone structure affects runoff generation in karst areas significantly and its complex hydrological processes could be simplified with threshold behaviors. This study proposed a three-thresholds-based karst runoff generation module (3T-KRGM), which used three reservoirs to represent water storage in the soil zone, soil–epikarst interface, and epikarst zone. The 3T-KRGM is coupled with Xinanjiang (XAJ) model to extend the applicability of the model to karst areas. Both the improved XAJ model and the original XAJ model were used in the Shibantang watershed, which is a typical karst watershed located in southwest China. The results indicate that the performance of daily discharge simulations was obviously improved by introducing the 3T-KRGM. In addition, both the parameter sensitivity analysis and baseflow simulation demonstrate that the 3T-KRGM is rational in structure. The 3T-KRGM could also be easily coupled into other hydrological models, thus benefiting the hydrological simulation in karst areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1