基于颜色纹理的深度神经网络人脸欺骗检测技术

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-09-01 DOI:10.2478/cait-2022-0032
Mayank Kumar Rusia, D. Singh
{"title":"基于颜色纹理的深度神经网络人脸欺骗检测技术","authors":"Mayank Kumar Rusia, D. Singh","doi":"10.2478/cait-2022-0032","DOIUrl":null,"url":null,"abstract":"Abstract Given the face spoofing attack, adequate protection of human identity through face has become a significant challenge globally. Face spoofing is an act of presenting a recaptured frame before the verification device to gain illegal access on behalf of a legitimate person with or without their concern. Several methods have been proposed to detect face spoofing attacks over the last decade. However, these methods only consider the luminance information, reflecting poor discrimination of spoofed face from the genuine face. This article proposes a practical approach combining Local Binary Patterns (LBP) and convolutional neural network-based transfer learning models to extract low-level and high-level features. This paper analyzes three color spaces (i.e., RGB, HSV, and YCrCb) to understand the impact of the color distribution on real and spoofed faces for the NUAA benchmark dataset. In-depth analysis of experimental results and comparison with other existing approaches show the superiority and effectiveness of our proposed models.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Color-Texture-Based Deep Neural Network Technique to Detect Face Spoofing Attacks\",\"authors\":\"Mayank Kumar Rusia, D. Singh\",\"doi\":\"10.2478/cait-2022-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given the face spoofing attack, adequate protection of human identity through face has become a significant challenge globally. Face spoofing is an act of presenting a recaptured frame before the verification device to gain illegal access on behalf of a legitimate person with or without their concern. Several methods have been proposed to detect face spoofing attacks over the last decade. However, these methods only consider the luminance information, reflecting poor discrimination of spoofed face from the genuine face. This article proposes a practical approach combining Local Binary Patterns (LBP) and convolutional neural network-based transfer learning models to extract low-level and high-level features. This paper analyzes three color spaces (i.e., RGB, HSV, and YCrCb) to understand the impact of the color distribution on real and spoofed faces for the NUAA benchmark dataset. In-depth analysis of experimental results and comparison with other existing approaches show the superiority and effectiveness of our proposed models.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要鉴于人脸欺骗攻击,通过人脸充分保护人类身份已成为全球面临的重大挑战。人脸欺骗是一种在验证设备前出示重新捕获的帧,以代表合法人员获得非法访问权限的行为,无论是否与合法人员有关。在过去的十年中,已经提出了几种方法来检测人脸欺骗攻击。然而,这些方法只考虑了亮度信息,反映出伪造人脸与真实人脸的区别很差。本文提出了一种结合局部二进制模式(LBP)和卷积神经网络迁移学习模型来提取低级和高级特征的实用方法。本文分析了三个颜色空间(即RGB、HSV和YCrCb),以了解NUAA基准数据集的颜色分布对真实人脸和伪造人脸的影响。对实验结果的深入分析以及与其他现有方法的比较表明了我们提出的模型的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Color-Texture-Based Deep Neural Network Technique to Detect Face Spoofing Attacks
Abstract Given the face spoofing attack, adequate protection of human identity through face has become a significant challenge globally. Face spoofing is an act of presenting a recaptured frame before the verification device to gain illegal access on behalf of a legitimate person with or without their concern. Several methods have been proposed to detect face spoofing attacks over the last decade. However, these methods only consider the luminance information, reflecting poor discrimination of spoofed face from the genuine face. This article proposes a practical approach combining Local Binary Patterns (LBP) and convolutional neural network-based transfer learning models to extract low-level and high-level features. This paper analyzes three color spaces (i.e., RGB, HSV, and YCrCb) to understand the impact of the color distribution on real and spoofed faces for the NUAA benchmark dataset. In-depth analysis of experimental results and comparison with other existing approaches show the superiority and effectiveness of our proposed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1