Jinchao Wang, Chuanying Wang, Z. Han, Yiteng Wang, Xinjian Tang
{"title":"一种基于集成钻井和光学显微成像系统的地应力测量方法","authors":"Jinchao Wang, Chuanying Wang, Z. Han, Yiteng Wang, Xinjian Tang","doi":"10.18690/ACTAGEOTECHSLOV.15.1.17-27.2018","DOIUrl":null,"url":null,"abstract":"Conventional geostress measurement methods are limited by deficiencies including the measurable depth, the complexity, and the long duration of operation. To address these problems and achieve the measurement of geostress in deep wells under conditions of complex high pressures and high temperatures, we propose a new measurement method for geostress based on an integrated drilling and optical microscopy system. Its innovative integrated structure eliminates the problems associated with complex procedures and depth limits, and avoids rock creep caused by long delays, significantly improving the accuracy and range of the measurements. It works by using microscopic imaging and direct contact probes to capture the changes of a borehole’s cross-sectional outlines before and after stress relief. The resulting images are analyzed with search circles to obtain the positions of probe apices, which can be fitted into ellipses that describe the outlines, and calculate the state of the stress. The validity and accuracy of the method was verified by in-door tests and field applications in the ZK1 borehole. The results show that: (1) the integrated system can be used to measure micrometer-grade deformations; (2) the search-circle approach can accurately obtain the positions of probe apices; and (3) the stress measurement method based on the system is accurate and feasible.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A geostress measurement method based on an integrated drilling and optical microscopic imaging system\",\"authors\":\"Jinchao Wang, Chuanying Wang, Z. Han, Yiteng Wang, Xinjian Tang\",\"doi\":\"10.18690/ACTAGEOTECHSLOV.15.1.17-27.2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional geostress measurement methods are limited by deficiencies including the measurable depth, the complexity, and the long duration of operation. To address these problems and achieve the measurement of geostress in deep wells under conditions of complex high pressures and high temperatures, we propose a new measurement method for geostress based on an integrated drilling and optical microscopy system. Its innovative integrated structure eliminates the problems associated with complex procedures and depth limits, and avoids rock creep caused by long delays, significantly improving the accuracy and range of the measurements. It works by using microscopic imaging and direct contact probes to capture the changes of a borehole’s cross-sectional outlines before and after stress relief. The resulting images are analyzed with search circles to obtain the positions of probe apices, which can be fitted into ellipses that describe the outlines, and calculate the state of the stress. The validity and accuracy of the method was verified by in-door tests and field applications in the ZK1 borehole. The results show that: (1) the integrated system can be used to measure micrometer-grade deformations; (2) the search-circle approach can accurately obtain the positions of probe apices; and (3) the stress measurement method based on the system is accurate and feasible.\",\"PeriodicalId\":50897,\"journal\":{\"name\":\"Acta Geotechnica Slovenica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica Slovenica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.1.17-27.2018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.1.17-27.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A geostress measurement method based on an integrated drilling and optical microscopic imaging system
Conventional geostress measurement methods are limited by deficiencies including the measurable depth, the complexity, and the long duration of operation. To address these problems and achieve the measurement of geostress in deep wells under conditions of complex high pressures and high temperatures, we propose a new measurement method for geostress based on an integrated drilling and optical microscopy system. Its innovative integrated structure eliminates the problems associated with complex procedures and depth limits, and avoids rock creep caused by long delays, significantly improving the accuracy and range of the measurements. It works by using microscopic imaging and direct contact probes to capture the changes of a borehole’s cross-sectional outlines before and after stress relief. The resulting images are analyzed with search circles to obtain the positions of probe apices, which can be fitted into ellipses that describe the outlines, and calculate the state of the stress. The validity and accuracy of the method was verified by in-door tests and field applications in the ZK1 borehole. The results show that: (1) the integrated system can be used to measure micrometer-grade deformations; (2) the search-circle approach can accurately obtain the positions of probe apices; and (3) the stress measurement method based on the system is accurate and feasible.
期刊介绍:
ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering.
ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing.
The journal is published twice a year.