氧化锌颗粒涂层正畸弹性体扎带的抗菌效果

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2023-07-31 DOI:10.4028/p-QCM4oh
Kornkanok Khlongwanitchakul, N. Anuwongnukroh, S. Dechkunakorn, Parichart Naruphontjirakul, W. Wichai, R. Srisatjaluk
{"title":"氧化锌颗粒涂层正畸弹性体扎带的抗菌效果","authors":"Kornkanok Khlongwanitchakul, N. Anuwongnukroh, S. Dechkunakorn, Parichart Naruphontjirakul, W. Wichai, R. Srisatjaluk","doi":"10.4028/p-QCM4oh","DOIUrl":null,"url":null,"abstract":"Objectives . This study aimed to evaluate antibacterial activity of elastomeric ligatures coated with Zinc oxide particles against Streptococcus mutans. Methods. ZnO particles grafted with (3-Aminopropyl) trimethoxysilane (APTMS) were prepared in situ. The ATR-FTIR spectrum was used to analyze the APTMS grafted on ZnO surfaces. Two concentrations of ZnO-APTMS, i.e., 5 and 10 wt%, were coated on orthodontic elastomeric ligatures by the dip coating method. Antibacterial property of the ZnO-APTMS coated elastomeric ligatures against S. mutans ATCC25175 were investigated by the agar diffusion test. The effect of ligature aging on antibacterial property was evaluated by the direct contact test, in which the growth of bacteria was determined by the turbidity after exposed to the samples that had been immersed in distilled water for 0, 3, 7, 14, 28 days. The drop plate test was also performed to determine the inhibitory and the bactericidal effects. Results. The analysis of ATR-FTIR spectrum confirmed that APTMS was successfully grafted on ZnO surfaces. The agar diffusion test could not demonstrate the antimicrobial effects of the ZnO-coated elastomeric ligatures. However, results from the direct contact and the drop plate tests showed the inhibitory effects on bacterial growth compared to the positive controls (p < 0.05). The inhibitory effect of the ZnO-coated elastomeric ligatures was observed even after they had been immersed in distilled water for 28 days. Conclusions. The surface coating elastomeric ligatures with 5 and 10 wt% ZnO-APTMS exhibited antibacterial activity against cariogenic bacteria, S. mutans. The bacterial inhibitory effect was prolonged until 28-day.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"61 1","pages":"43 - 50"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Effect of Experimental Orthodontic Elastomeric Ligature Coated with Zinc Oxide Particles\",\"authors\":\"Kornkanok Khlongwanitchakul, N. Anuwongnukroh, S. Dechkunakorn, Parichart Naruphontjirakul, W. Wichai, R. Srisatjaluk\",\"doi\":\"10.4028/p-QCM4oh\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives . This study aimed to evaluate antibacterial activity of elastomeric ligatures coated with Zinc oxide particles against Streptococcus mutans. Methods. ZnO particles grafted with (3-Aminopropyl) trimethoxysilane (APTMS) were prepared in situ. The ATR-FTIR spectrum was used to analyze the APTMS grafted on ZnO surfaces. Two concentrations of ZnO-APTMS, i.e., 5 and 10 wt%, were coated on orthodontic elastomeric ligatures by the dip coating method. Antibacterial property of the ZnO-APTMS coated elastomeric ligatures against S. mutans ATCC25175 were investigated by the agar diffusion test. The effect of ligature aging on antibacterial property was evaluated by the direct contact test, in which the growth of bacteria was determined by the turbidity after exposed to the samples that had been immersed in distilled water for 0, 3, 7, 14, 28 days. The drop plate test was also performed to determine the inhibitory and the bactericidal effects. Results. The analysis of ATR-FTIR spectrum confirmed that APTMS was successfully grafted on ZnO surfaces. The agar diffusion test could not demonstrate the antimicrobial effects of the ZnO-coated elastomeric ligatures. However, results from the direct contact and the drop plate tests showed the inhibitory effects on bacterial growth compared to the positive controls (p < 0.05). The inhibitory effect of the ZnO-coated elastomeric ligatures was observed even after they had been immersed in distilled water for 28 days. Conclusions. The surface coating elastomeric ligatures with 5 and 10 wt% ZnO-APTMS exhibited antibacterial activity against cariogenic bacteria, S. mutans. The bacterial inhibitory effect was prolonged until 28-day.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":\"61 1\",\"pages\":\"43 - 50\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-QCM4oh\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-QCM4oh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标。本研究旨在评估涂有氧化锌颗粒的弹性体结扎物对变形链球菌的抗菌活性。方法。原位制备了(3-氨基丙基)三甲氧基硅烷(APTMS)接枝ZnO颗粒。利用ATR-FTIR光谱分析了接枝在ZnO表面的APTMS。通过浸渍涂布法将两种浓度的ZnO APTMS,即5和10wt%涂布在正畸弹性体结扎上。通过琼脂扩散试验研究了ZnO APTMS涂层弹性体结扎物对变异链球菌ATCC25175的抗菌性能。结扎老化对抗菌性能的影响通过直接接触试验进行评估,其中细菌的生长通过暴露于浸泡在蒸馏水中0、3、7、14、28天后的浊度来确定。还进行了滴板试验以确定抑制作用和杀菌作用。后果ATR-FTIR光谱分析证实APTMS成功地接枝在ZnO表面。琼脂扩散试验不能证明ZnO涂层的弹性体结扎物的抗菌效果。然而,直接接触和滴板试验的结果显示,与阳性对照相比,对细菌生长有抑制作用(p<0.05)。即使在蒸馏水中浸泡28天后,也观察到ZnO涂层弹性体结扎物的抑制作用。结论。具有5和10wt%ZnO APTMS的表面涂层弹性体连接物显示出对致龋细菌变形链球菌的抗菌活性。细菌抑制作用延长至28天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibacterial Effect of Experimental Orthodontic Elastomeric Ligature Coated with Zinc Oxide Particles
Objectives . This study aimed to evaluate antibacterial activity of elastomeric ligatures coated with Zinc oxide particles against Streptococcus mutans. Methods. ZnO particles grafted with (3-Aminopropyl) trimethoxysilane (APTMS) were prepared in situ. The ATR-FTIR spectrum was used to analyze the APTMS grafted on ZnO surfaces. Two concentrations of ZnO-APTMS, i.e., 5 and 10 wt%, were coated on orthodontic elastomeric ligatures by the dip coating method. Antibacterial property of the ZnO-APTMS coated elastomeric ligatures against S. mutans ATCC25175 were investigated by the agar diffusion test. The effect of ligature aging on antibacterial property was evaluated by the direct contact test, in which the growth of bacteria was determined by the turbidity after exposed to the samples that had been immersed in distilled water for 0, 3, 7, 14, 28 days. The drop plate test was also performed to determine the inhibitory and the bactericidal effects. Results. The analysis of ATR-FTIR spectrum confirmed that APTMS was successfully grafted on ZnO surfaces. The agar diffusion test could not demonstrate the antimicrobial effects of the ZnO-coated elastomeric ligatures. However, results from the direct contact and the drop plate tests showed the inhibitory effects on bacterial growth compared to the positive controls (p < 0.05). The inhibitory effect of the ZnO-coated elastomeric ligatures was observed even after they had been immersed in distilled water for 28 days. Conclusions. The surface coating elastomeric ligatures with 5 and 10 wt% ZnO-APTMS exhibited antibacterial activity against cariogenic bacteria, S. mutans. The bacterial inhibitory effect was prolonged until 28-day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound Effect of Plant Oil Derived Bio-Resin and Curing Temperature on Static and Dynamic Mechanical Properties of Epoxy Network Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning <i>In Vitro</i> Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites Synthesis of Colloidal Silver Nanoparticles Using Alginate as Reducing and Stabilizing Agents and its Application as Antibacterial Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1