{"title":"优化含大理石增强混凝土的屏蔽性能","authors":"A. Abdel-Latif, M. Kassab, M. Sayyed, H. Tekin","doi":"10.4279/pip.120005","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15 and 20 % marble waste powder as a cement replacement on the basis of weight. These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients (μm), mean free path (MFP), effective atomic number (Zeff ) and exposure build-up factors (EBF) were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample containing 10 % marble has the highest compressive strength and potentially good gamma ray and neutron radiation shielding properties.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimizing the shielding properties of strength-enhanced concrete containing marble\",\"authors\":\"A. Abdel-Latif, M. Kassab, M. Sayyed, H. Tekin\",\"doi\":\"10.4279/pip.120005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15 and 20 % marble waste powder as a cement replacement on the basis of weight. These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients (μm), mean free path (MFP), effective atomic number (Zeff ) and exposure build-up factors (EBF) were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample containing 10 % marble has the highest compressive strength and potentially good gamma ray and neutron radiation shielding properties.\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.120005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.120005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing the shielding properties of strength-enhanced concrete containing marble
The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15 and 20 % marble waste powder as a cement replacement on the basis of weight. These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients (μm), mean free path (MFP), effective atomic number (Zeff ) and exposure build-up factors (EBF) were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample containing 10 % marble has the highest compressive strength and potentially good gamma ray and neutron radiation shielding properties.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.