突出振荡

IF 20.9 1区 物理与天体物理 Living Reviews in Solar Physics Pub Date : 2018-04-23 DOI:10.1007/s41116-018-0012-6
Iñigo Arregui, Ramón Oliver, José Luis Ballester
{"title":"突出振荡","authors":"Iñigo Arregui,&nbsp;Ramón Oliver,&nbsp;José Luis Ballester","doi":"10.1007/s41116-018-0012-6","DOIUrl":null,"url":null,"abstract":"<p>Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences) that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small and large amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.</p>","PeriodicalId":49147,"journal":{"name":"Living Reviews in Solar Physics","volume":null,"pages":null},"PeriodicalIF":20.9000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-018-0012-6","citationCount":"12","resultStr":"{\"title\":\"Prominence oscillations\",\"authors\":\"Iñigo Arregui,&nbsp;Ramón Oliver,&nbsp;José Luis Ballester\",\"doi\":\"10.1007/s41116-018-0012-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences) that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small and large amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.</p>\",\"PeriodicalId\":49147,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.9000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41116-018-0012-6\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41116-018-0012-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-018-0012-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

日珥很有趣,但人们对日冕的磁性结构知之甚少。太阳日珥的动力学一直是大量研究的主题,特别有趣的是日珥振荡的研究。地面和天基观测证实了日珥中振荡运动的存在,并用磁流体力学波来解释它们。这一解释为日珥地震学的研究打开了大门,其主要目的是确定难以直接测量的磁和等离子体结构(日珥)的物理参数。在此,我们回顾了日珥振荡的观测资料,以及用来解释小振幅和大振幅振荡及其时空衰减的理论模型。最后,介绍了几个突出地震的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prominence oscillations

Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences) that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small and large amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics ASTRONOMY & ASTROPHYSICS-
自引率
1.40%
发文量
3
期刊介绍: Living Reviews in Solar Physics, a platinum open-access journal, publishes invited reviews covering research across all areas of solar and heliospheric physics. It distinguishes itself by maintaining a collection of high-quality reviews regularly updated by the authors. Established in 2004, it was founded by the Max Planck Institute for Solar System Research (MPS). "Living Reviews®" is a registered trademark of Springer International Publishing AG.
期刊最新文献
Machine learning in solar physics Models for the long-term variations of solar activity A history of solar activity over millennia Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes Extreme solar events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1