{"title":"扭曲多层石墨烯和二维纳米异质结构的“魔力”","authors":"K. Saumya, Susmita Naskar, T. Mukhopadhyay","doi":"10.1088/2399-1984/acf0a9","DOIUrl":null,"url":null,"abstract":"Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"‘Magic’ of twisted multi-layered graphene and 2D nano-heterostructures\",\"authors\":\"K. Saumya, Susmita Naskar, T. Mukhopadhyay\",\"doi\":\"10.1088/2399-1984/acf0a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/acf0a9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/acf0a9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
‘Magic’ of twisted multi-layered graphene and 2D nano-heterostructures
Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.