金属基离子液体和固体负载催化剂在燃料油脱硫中的研究进展

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Mini-reviews in Organic Chemistry Pub Date : 2023-06-01 DOI:10.2174/1570193x20666230601093152
Hang Xu, Anqi Niu, Qinlin Yuan, Fengmin Wu, Xuefeng Wei
{"title":"金属基离子液体和固体负载催化剂在燃料油脱硫中的研究进展","authors":"Hang Xu, Anqi Niu, Qinlin Yuan, Fengmin Wu, Xuefeng Wei","doi":"10.2174/1570193x20666230601093152","DOIUrl":null,"url":null,"abstract":"\n\nMetal-based ionic liquids (MILs) have the advantages of designability, efficiency, stability, and regenerative cycle and can efficiently convert thiophene and its derivatives, which are important for the production of \"ultra-low sulfur\" oils. This paper provides an overview of the research progress of MILs in the field of fuel desulfurization, focusing on the current status of MILs and solid-loaded MILs catalysts in extractive desulfurization, oxidative desulfurization, extraction-catalyzed oxidative desulfurization, and catalytic-adsorption desulfurization processes. For MILs, the anion and cation can be altered by design so as to impart specific functions. Loading is one of the effective ways to solidify MILs, and the combination of MILs with different carriers can not only reduce the usage while ensuring the catalytic activity but also improve the reusability of the catalyst. The combination of MILs with specially structured carriers also allows solution-free adsorption and removal of oxidation products. Compared with conventional MILs, polymetallic-based ionic liquids (PMILs) exhibit ultra-high catalytic activity and are one of the most promising materials available, but are still in their infancy in the field of fuel catalysis, and researchers are needed to enrich the gap in this field. Finally, some problems faced by various types of MILs are pointed out in order to design new functional MILs catalysts with better properties in the future and promote the further development of MILs in the field of fuel catalysis.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-based ionic liquids and solid-loaded catalysts in fuel oil desulfurization: A review\",\"authors\":\"Hang Xu, Anqi Niu, Qinlin Yuan, Fengmin Wu, Xuefeng Wei\",\"doi\":\"10.2174/1570193x20666230601093152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nMetal-based ionic liquids (MILs) have the advantages of designability, efficiency, stability, and regenerative cycle and can efficiently convert thiophene and its derivatives, which are important for the production of \\\"ultra-low sulfur\\\" oils. This paper provides an overview of the research progress of MILs in the field of fuel desulfurization, focusing on the current status of MILs and solid-loaded MILs catalysts in extractive desulfurization, oxidative desulfurization, extraction-catalyzed oxidative desulfurization, and catalytic-adsorption desulfurization processes. For MILs, the anion and cation can be altered by design so as to impart specific functions. Loading is one of the effective ways to solidify MILs, and the combination of MILs with different carriers can not only reduce the usage while ensuring the catalytic activity but also improve the reusability of the catalyst. The combination of MILs with specially structured carriers also allows solution-free adsorption and removal of oxidation products. Compared with conventional MILs, polymetallic-based ionic liquids (PMILs) exhibit ultra-high catalytic activity and are one of the most promising materials available, but are still in their infancy in the field of fuel catalysis, and researchers are needed to enrich the gap in this field. Finally, some problems faced by various types of MILs are pointed out in order to design new functional MILs catalysts with better properties in the future and promote the further development of MILs in the field of fuel catalysis.\\n\",\"PeriodicalId\":18632,\"journal\":{\"name\":\"Mini-reviews in Organic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini-reviews in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570193x20666230601093152\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230601093152","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

金属基离子液体具有可设计性、高效性、稳定性和可再生循环等优点,能够高效地转化噻吩及其衍生物,对“超低硫”油的生产具有重要意义。本文综述了mil在燃料脱硫领域的研究进展,重点介绍了mil及其固体负载催化剂在萃取脱硫、氧化脱硫、萃取催化氧化脱硫和催化吸附脱硫等方面的研究现状。对于mil,阴离子和阳离子可以通过设计改变,以赋予特定的功能。负载是固化mil的有效方法之一,不同载体的mil组合在保证催化活性的同时减少用量,提高催化剂的可重复使用性。mil与特殊结构载体的结合也允许无溶液吸附和去除氧化产物。与传统离子液体相比,多金属基离子液体(PMILs)具有超高的催化活性,是目前最有前途的材料之一,但在燃料催化领域仍处于起步阶段,需要研究人员填补这一领域的空白。最后指出了各种类型的mil所面临的一些问题,以期在未来设计出性能更好的新型功能性mil催化剂,促进mil在燃料催化领域的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal-based ionic liquids and solid-loaded catalysts in fuel oil desulfurization: A review
Metal-based ionic liquids (MILs) have the advantages of designability, efficiency, stability, and regenerative cycle and can efficiently convert thiophene and its derivatives, which are important for the production of "ultra-low sulfur" oils. This paper provides an overview of the research progress of MILs in the field of fuel desulfurization, focusing on the current status of MILs and solid-loaded MILs catalysts in extractive desulfurization, oxidative desulfurization, extraction-catalyzed oxidative desulfurization, and catalytic-adsorption desulfurization processes. For MILs, the anion and cation can be altered by design so as to impart specific functions. Loading is one of the effective ways to solidify MILs, and the combination of MILs with different carriers can not only reduce the usage while ensuring the catalytic activity but also improve the reusability of the catalyst. The combination of MILs with specially structured carriers also allows solution-free adsorption and removal of oxidation products. Compared with conventional MILs, polymetallic-based ionic liquids (PMILs) exhibit ultra-high catalytic activity and are one of the most promising materials available, but are still in their infancy in the field of fuel catalysis, and researchers are needed to enrich the gap in this field. Finally, some problems faced by various types of MILs are pointed out in order to design new functional MILs catalysts with better properties in the future and promote the further development of MILs in the field of fuel catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mini-reviews in Organic Chemistry
Mini-reviews in Organic Chemistry 化学-有机化学
CiteScore
4.50
自引率
4.30%
发文量
116
审稿时长
>12 weeks
期刊介绍: Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges. The journal encourages submission of reviews on emerging fields of organic chemistry including: Bioorganic Chemistry Carbohydrate Chemistry Chemical Biology Chemical Process Research Computational Organic Chemistry Development of Synthetic Methodologies Functional Organic Materials Heterocyclic Chemistry Macromolecular Chemistry Natural Products Isolation And Synthesis New Synthetic Methodology Organic Reactions Organocatalysis Organometallic Chemistry Theoretical Organic Chemistry Polymer Chemistry Stereochemistry Structural Investigations Supramolecular Chemistry
期刊最新文献
Research Progress on Compounds with Antioxidant Activity Derived from Microorganisms Synthesis of Indazole Scaffolds from Arynes and Suitable Coupling Partners - A Brief Review Multifunctional Smart Nano Biopolymers for Programmed Controlled Release of Biomolecules and Therapeutic Agents: An Overview on Modern Emerging Systems A Comprehensive Review on History, Sources, Biosynthesis, Chemical Synthesis and Applications of Stilbenes Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Imidazole Alkaloids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1