吸附水中腐殖酸的钴基金属有机骨架的合成及应用

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Chemical and Biochemical Engineering Quarterly Pub Date : 2022-04-11 DOI:10.15255/cabeq.2021.1960
Sana Naseem, H. Aslam, Aamir Abbas, Sara Sumbal, Rizwan Ali, Muhammad Usman
{"title":"吸附水中腐殖酸的钴基金属有机骨架的合成及应用","authors":"Sana Naseem, H. Aslam, Aamir Abbas, Sara Sumbal, Rizwan Ali, Muhammad Usman","doi":"10.15255/cabeq.2021.1960","DOIUrl":null,"url":null,"abstract":"In this study, the adsorption of humic acid on cobalt based metal-organic framework (Co-MOF) was investigated. Co-MOF was synthesized via solvothermal technique and further characterized using X-ray diffraction (XRD), Fourier transform infrared spectros-copy (FTIR), and scanning electron microscopy (SEM). The characterization results of material confirm the formation of MOF structure. The adsorption kinetics, isotherms, thermodynamics, as well as isosteric heat of adsorption were also investigated by obtaining experimental adsorption data through batch experimentation. Optimum adsorption uptake of ~91 mg g –1 was attained at pH 6 and 305 K. Regression analysis of experimental results revealed that adsorption kinetics follows a pseudo-second-order kinetic model, and adsorption can reach equilibrium at ~20 min. Adsorption isotherm data can be well fitted with Koble Corrigan isotherm. Thermodynamic parameters demonstrated that the adsorption of humic acid is a spontaneous, endothermic, and physical process, while isosteric heat evaluations revealed the heterogeneous nature of the adsorbent. Overall, the Co-MOF was a promising choice to adsorb humic acid from water.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Application of Cobalt-based Metal-organic Framework for Adsorption of Humic Acid from Water\",\"authors\":\"Sana Naseem, H. Aslam, Aamir Abbas, Sara Sumbal, Rizwan Ali, Muhammad Usman\",\"doi\":\"10.15255/cabeq.2021.1960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the adsorption of humic acid on cobalt based metal-organic framework (Co-MOF) was investigated. Co-MOF was synthesized via solvothermal technique and further characterized using X-ray diffraction (XRD), Fourier transform infrared spectros-copy (FTIR), and scanning electron microscopy (SEM). The characterization results of material confirm the formation of MOF structure. The adsorption kinetics, isotherms, thermodynamics, as well as isosteric heat of adsorption were also investigated by obtaining experimental adsorption data through batch experimentation. Optimum adsorption uptake of ~91 mg g –1 was attained at pH 6 and 305 K. Regression analysis of experimental results revealed that adsorption kinetics follows a pseudo-second-order kinetic model, and adsorption can reach equilibrium at ~20 min. Adsorption isotherm data can be well fitted with Koble Corrigan isotherm. Thermodynamic parameters demonstrated that the adsorption of humic acid is a spontaneous, endothermic, and physical process, while isosteric heat evaluations revealed the heterogeneous nature of the adsorbent. Overall, the Co-MOF was a promising choice to adsorb humic acid from water.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2021.1960\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2021.1960","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

研究了腐殖酸在钴基金属有机骨架(Co-MOF)上的吸附行为。采用溶剂热法合成了Co-MOF,并利用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对其进行了表征。材料的表征结果证实了MOF结构的形成。通过批量实验获得实验吸附数据,还研究了吸附动力学、等温线、热力学以及等温吸附热。在pH 6和305 K下获得了~91 mg g–1的最佳吸附量。实验结果的回归分析表明,吸附动力学遵循准二阶动力学模型,吸附可以在~20分钟达到平衡。吸附等温线数据可以很好地与Koble-Corrigan等温线拟合。热力学参数表明,腐殖酸的吸附是一个自发的、吸热的物理过程,而等温评价揭示了吸附剂的非均相性质。总的来说,Co-MOF是一种很有前途的吸附水中腐殖酸的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Application of Cobalt-based Metal-organic Framework for Adsorption of Humic Acid from Water
In this study, the adsorption of humic acid on cobalt based metal-organic framework (Co-MOF) was investigated. Co-MOF was synthesized via solvothermal technique and further characterized using X-ray diffraction (XRD), Fourier transform infrared spectros-copy (FTIR), and scanning electron microscopy (SEM). The characterization results of material confirm the formation of MOF structure. The adsorption kinetics, isotherms, thermodynamics, as well as isosteric heat of adsorption were also investigated by obtaining experimental adsorption data through batch experimentation. Optimum adsorption uptake of ~91 mg g –1 was attained at pH 6 and 305 K. Regression analysis of experimental results revealed that adsorption kinetics follows a pseudo-second-order kinetic model, and adsorption can reach equilibrium at ~20 min. Adsorption isotherm data can be well fitted with Koble Corrigan isotherm. Thermodynamic parameters demonstrated that the adsorption of humic acid is a spontaneous, endothermic, and physical process, while isosteric heat evaluations revealed the heterogeneous nature of the adsorbent. Overall, the Co-MOF was a promising choice to adsorb humic acid from water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
期刊最新文献
Influence of Reaction Parameters and Feedstock Type on the Synthesis of Fatty Acid Propyl, Butyl, Isobutyl, Pentyl, and Isopentyl Esters Effect of Silver Addition on Cu-based Shape Memory Alloys Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel Amoxicillin Biodegradation with Bacillus subtilis and Pseudomonas aeruginosa: Characterization of Relevant Degradation Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1