在规则波激励下,多孔挡板对驳船集装箱内晃动压力分布的影响

IF 1.2 Q3 ENGINEERING, MARINE Journal of Naval Architecture and Marine Engineering Pub Date : 2020-06-20 DOI:10.3329/jname.v17i1.42001
T. Nasar, S. Sannasiraj, V. Sundar
{"title":"在规则波激励下,多孔挡板对驳船集装箱内晃动压力分布的影响","authors":"T. Nasar, S. Sannasiraj, V. Sundar","doi":"10.3329/jname.v17i1.42001","DOIUrl":null,"url":null,"abstract":"An experimental study has been carried out to assess the sloshing pressure expected on the side walls of the tank and on top panel. A liquid fill level with an aspect ratio (hs /l, where hs is the static liquid depth and l is the tank length) of 0.488 is considered which corresponds to 75% liquid fill level. In view of suppressing sloshing oscillation and consequent sloshing pressure, the baffle wall configurations such as porous wall at l/2 and porous walls at l/3 and 2l/3 were adopted. Three porosities of 15%, 20.2%, and 25.2% were considered. The sloshing tank is fitted into the freely floating barge of model scale 1:43. The barge is kept inside the wave flume in the beam sea conditions. The effects of wave excitation frequencies and on the sloshing pressure variation have been studied in detail. For comparison purpose, solid wall placed at l/2 (Nasar and Sannasiraj, 2018) is also considered and, the salient results are herein reported.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"17 1","pages":"1-30"},"PeriodicalIF":1.2000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of porous baffle on sloshing pressure distribution in a barge mounted container subjected to regular wave excitation\",\"authors\":\"T. Nasar, S. Sannasiraj, V. Sundar\",\"doi\":\"10.3329/jname.v17i1.42001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental study has been carried out to assess the sloshing pressure expected on the side walls of the tank and on top panel. A liquid fill level with an aspect ratio (hs /l, where hs is the static liquid depth and l is the tank length) of 0.488 is considered which corresponds to 75% liquid fill level. In view of suppressing sloshing oscillation and consequent sloshing pressure, the baffle wall configurations such as porous wall at l/2 and porous walls at l/3 and 2l/3 were adopted. Three porosities of 15%, 20.2%, and 25.2% were considered. The sloshing tank is fitted into the freely floating barge of model scale 1:43. The barge is kept inside the wave flume in the beam sea conditions. The effects of wave excitation frequencies and on the sloshing pressure variation have been studied in detail. For comparison purpose, solid wall placed at l/2 (Nasar and Sannasiraj, 2018) is also considered and, the salient results are herein reported.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"17 1\",\"pages\":\"1-30\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v17i1.42001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v17i1.42001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

对罐壁和顶板上的晃动压力进行了试验研究。考虑宽高比(hs /l,其中hs为静态液体深度,l为罐长)0.488的液体填充水平,对应于75%的液体填充水平。为了抑制晃动振荡和随之产生的晃动压力,采用了1 /2处多孔壁、1 /3处和21 /3处多孔壁等挡流壁构型。孔隙率分别为15%、20.2%和25.2%。晃动箱安装在模型比例为1:43的自由浮动驳船上。在波束海况下,驳船保持在波浪水槽内。研究了激波激振频率和激波激振压力对激波激振压力变化的影响。为了进行比较,还考虑了放置在1 /2的实体墙(Nasar和Sannasiraj, 2018),并在此报告了显著结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of porous baffle on sloshing pressure distribution in a barge mounted container subjected to regular wave excitation
An experimental study has been carried out to assess the sloshing pressure expected on the side walls of the tank and on top panel. A liquid fill level with an aspect ratio (hs /l, where hs is the static liquid depth and l is the tank length) of 0.488 is considered which corresponds to 75% liquid fill level. In view of suppressing sloshing oscillation and consequent sloshing pressure, the baffle wall configurations such as porous wall at l/2 and porous walls at l/3 and 2l/3 were adopted. Three porosities of 15%, 20.2%, and 25.2% were considered. The sloshing tank is fitted into the freely floating barge of model scale 1:43. The barge is kept inside the wave flume in the beam sea conditions. The effects of wave excitation frequencies and on the sloshing pressure variation have been studied in detail. For comparison purpose, solid wall placed at l/2 (Nasar and Sannasiraj, 2018) is also considered and, the salient results are herein reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
期刊最新文献
Design of thin curved sensor to measure contact slip in fretting experiments Similarity solution of stagnation – spot flow of a micropolar fluid above a flat exponentially elongating penetrable surface with concentration and heat production/absorption Inventory optimization model of deteriorating items with nonlinear ramped type demand function Combined convective and viscous dissipation effects on peristaltic flow of Ellis fluid in non uniform tube A study for validating, rectifying and optimizing the flow in the test section of a circulating water channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1