{"title":"衍射元件与同步激振扫描相结合的超短激光脉冲高速激光加工","authors":"M. Gafner, S. Remund, M. Chaja, B. Neuenschwander","doi":"10.1515/aot-2021-0035","DOIUrl":null,"url":null,"abstract":"Abstract The combination of diffractive optical elements or spatial light modulators with fully synchronized galvo scanners offers a possibility to scale up machining processes with ultra-short pulses to several 100 W of average power with minimal thermal impact. This will be demonstrated with the high-rate applications multi-pulse drilling on the fly and material removal with special intensity distributions up to an average power of 162 W and a removal rate of 16.5 mm3/min. Based on the experimental results strategies to achieve drilling rates of several 10,000 holes/s or removal rates of multiple 10 mm3/min will be discussed.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"10 1","pages":"333 - 352"},"PeriodicalIF":2.3000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-rate laser processing with ultrashort laser pulses by combination of diffractive elements with synchronized galvo scanning\",\"authors\":\"M. Gafner, S. Remund, M. Chaja, B. Neuenschwander\",\"doi\":\"10.1515/aot-2021-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The combination of diffractive optical elements or spatial light modulators with fully synchronized galvo scanners offers a possibility to scale up machining processes with ultra-short pulses to several 100 W of average power with minimal thermal impact. This will be demonstrated with the high-rate applications multi-pulse drilling on the fly and material removal with special intensity distributions up to an average power of 162 W and a removal rate of 16.5 mm3/min. Based on the experimental results strategies to achieve drilling rates of several 10,000 holes/s or removal rates of multiple 10 mm3/min will be discussed.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":\"10 1\",\"pages\":\"333 - 352\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2021-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
High-rate laser processing with ultrashort laser pulses by combination of diffractive elements with synchronized galvo scanning
Abstract The combination of diffractive optical elements or spatial light modulators with fully synchronized galvo scanners offers a possibility to scale up machining processes with ultra-short pulses to several 100 W of average power with minimal thermal impact. This will be demonstrated with the high-rate applications multi-pulse drilling on the fly and material removal with special intensity distributions up to an average power of 162 W and a removal rate of 16.5 mm3/min. Based on the experimental results strategies to achieve drilling rates of several 10,000 holes/s or removal rates of multiple 10 mm3/min will be discussed.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.