W H Li, C J R Duncan, M B Andorf, A C Bartnik, E Bianco, L Cultrera, A Galdi, M Gordon, M Kaemingk, C A Pennington, L F Kourkoutis, I V Bazarov, J M Maxson
{"title":"一种使用低发射度半导体光电阴极的千电子伏超快电子微衍射装置","authors":"W H Li, C J R Duncan, M B Andorf, A C Bartnik, E Bianco, L Cultrera, A Galdi, M Gordon, M Kaemingk, C A Pennington, L F Kourkoutis, I V Bazarov, J M Maxson","doi":"10.1063/4.0000138","DOIUrl":null,"url":null,"abstract":"<p><p>We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be <math><mrow><mn>7</mn> <mo>×</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>13</mn></mrow> </msup> <mo> </mo> <mi>A</mi> <mo>/</mo> <msup><mi>m</mi> <mn>2</mn></msup> <mo> </mo> <msup><mrow><mtext>rad</mtext></mrow> <mn>2</mn></msup> </mrow> </math> . To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934190/pdf/","citationCount":"0","resultStr":"{\"title\":\"A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes.\",\"authors\":\"W H Li, C J R Duncan, M B Andorf, A C Bartnik, E Bianco, L Cultrera, A Galdi, M Gordon, M Kaemingk, C A Pennington, L F Kourkoutis, I V Bazarov, J M Maxson\",\"doi\":\"10.1063/4.0000138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be <math><mrow><mn>7</mn> <mo>×</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>13</mn></mrow> </msup> <mo> </mo> <mi>A</mi> <mo>/</mo> <msup><mi>m</mi> <mn>2</mn></msup> <mo> </mo> <msup><mrow><mtext>rad</mtext></mrow> <mn>2</mn></msup> </mrow> </math> . To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000138\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000138","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes.
We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be . To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.