非参数条件密度估计量在泛函单指标模型的局部线性估计中的渐近性质

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-09-02 DOI:10.1080/24754269.2021.1965945
Fadila Benaissa, Abdelmalek Gagui, Abdelhak Chouaf
{"title":"非参数条件密度估计量在泛函单指标模型的局部线性估计中的渐近性质","authors":"Fadila Benaissa, Abdelmalek Gagui, Abdelhak Chouaf","doi":"10.1080/24754269.2021.1965945","DOIUrl":null,"url":null,"abstract":"This paper deals with the conditional density estimator of a real response variable given a functional random variable (i.e., takes values in an infinite-dimensional space). Specifically, we focus on the functional index model, and this approach represents a good compromise between nonparametric and parametric models. Then we give under general conditions and when the variables are independent, the quadratic error and asymptotic normality of estimator by local linear method, based on the single-index structure. Finally, we complete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"208 - 219"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic properties of a nonparametric conditional density estimator in the local linear estimation for functional data via a functional single-index model\",\"authors\":\"Fadila Benaissa, Abdelmalek Gagui, Abdelhak Chouaf\",\"doi\":\"10.1080/24754269.2021.1965945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the conditional density estimator of a real response variable given a functional random variable (i.e., takes values in an infinite-dimensional space). Specifically, we focus on the functional index model, and this approach represents a good compromise between nonparametric and parametric models. Then we give under general conditions and when the variables are independent, the quadratic error and asymptotic normality of estimator by local linear method, based on the single-index structure. Finally, we complete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"208 - 219\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2021.1965945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1965945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了给定函数随机变量(即取无穷维空间中的值)的实响应变量的条件密度估计器。具体来说,我们关注的是函数指数模型,这种方法代表了非参数模型和参数模型之间的良好折衷。然后,在一般条件下,当变量独立时,基于单指标结构,用局部线性方法给出了估计量的二次误差和渐近正态性。最后,我们通过一些模拟研究完成了这些理论进展,显示了局部线性方法的实际结果,以及估计器和蒙特卡罗方法在有限样本量下创建函数伪置信区的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic properties of a nonparametric conditional density estimator in the local linear estimation for functional data via a functional single-index model
This paper deals with the conditional density estimator of a real response variable given a functional random variable (i.e., takes values in an infinite-dimensional space). Specifically, we focus on the functional index model, and this approach represents a good compromise between nonparametric and parametric models. Then we give under general conditions and when the variables are independent, the quadratic error and asymptotic normality of estimator by local linear method, based on the single-index structure. Finally, we complete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1