{"title":"按需电流体动力喷射乙二醇和水的混合物-控制皮升流体沉积系统","authors":"J. F. Dijksman, U. Stachewicz","doi":"10.2352/j.imagingsci.technol.2021.65.4.040405","DOIUrl":null,"url":null,"abstract":"Abstract On-demand electrohydrodynamic jetting also called electrohydrodynamic atomization (EHDA) is a method to jet small amounts of fluid out of a nozzle with a relatively large diameter by switching on and off an electrical field between the nozzle and the substrate. The\n total amount of volume deposited is up to 5 pL. The set-up consists of a vertically placed glass pipette with a small nozzle directed downward and a flat substrate placed close to the end of the nozzle. Inside the pipette, an electrode is mounted close to the entrance of the nozzle. The electrode\n is connected to a high voltage power amplifier. Upon switching on the electrical field, the apparent surface tension drops, the meniscus deforms into a cone and fluid starts to flow toward the nozzle deforming the meniscus. At a certain moment the cone reaches the Taylor cone dimensions and\n from its tip a jet emerges that decomposes into a stream of charged fL droplets that fly toward the substrate. This process stops when the pulse is switched off. After switching off, the meniscus returns slowly to its equilibrium position. The process is controlled by different time constants,\n such as the slew rate of the power amplifier and the RC time of the electrical circuit composed of the electrical resistance in the fluid contained in the nozzle between the electrode and the meniscus, and the capacitance of the gap between the meniscus and the flat substrate. Another time\n constant deals with the fluid flow during the growth of the meniscus, directly after switching on the pulse. This fluid flow is driven by hydrostatic pressure and opposed by a viscous drag in the nozzle. The final fluid flow during droplet formation is governed by the balance between the drag\n of the charge carriers inside the fluid, caused by the current associated with the charged droplets leaving the meniscus and the viscous drag. These different phenomena will be discussed theoretically and compared to experimental results.","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On-demand Electrohydrodynamic Jetting of an Ethylene Glycol and Water Mixture—System of Controlled Picoliter Fluid Deposition\",\"authors\":\"J. F. Dijksman, U. Stachewicz\",\"doi\":\"10.2352/j.imagingsci.technol.2021.65.4.040405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract On-demand electrohydrodynamic jetting also called electrohydrodynamic atomization (EHDA) is a method to jet small amounts of fluid out of a nozzle with a relatively large diameter by switching on and off an electrical field between the nozzle and the substrate. The\\n total amount of volume deposited is up to 5 pL. The set-up consists of a vertically placed glass pipette with a small nozzle directed downward and a flat substrate placed close to the end of the nozzle. Inside the pipette, an electrode is mounted close to the entrance of the nozzle. The electrode\\n is connected to a high voltage power amplifier. Upon switching on the electrical field, the apparent surface tension drops, the meniscus deforms into a cone and fluid starts to flow toward the nozzle deforming the meniscus. At a certain moment the cone reaches the Taylor cone dimensions and\\n from its tip a jet emerges that decomposes into a stream of charged fL droplets that fly toward the substrate. This process stops when the pulse is switched off. After switching off, the meniscus returns slowly to its equilibrium position. The process is controlled by different time constants,\\n such as the slew rate of the power amplifier and the RC time of the electrical circuit composed of the electrical resistance in the fluid contained in the nozzle between the electrode and the meniscus, and the capacitance of the gap between the meniscus and the flat substrate. Another time\\n constant deals with the fluid flow during the growth of the meniscus, directly after switching on the pulse. This fluid flow is driven by hydrostatic pressure and opposed by a viscous drag in the nozzle. The final fluid flow during droplet formation is governed by the balance between the drag\\n of the charge carriers inside the fluid, caused by the current associated with the charged droplets leaving the meniscus and the viscous drag. These different phenomena will be discussed theoretically and compared to experimental results.\",\"PeriodicalId\":15924,\"journal\":{\"name\":\"Journal of Imaging Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2352/j.imagingsci.technol.2021.65.4.040405\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2352/j.imagingsci.technol.2021.65.4.040405","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
On-demand Electrohydrodynamic Jetting of an Ethylene Glycol and Water Mixture—System of Controlled Picoliter Fluid Deposition
Abstract On-demand electrohydrodynamic jetting also called electrohydrodynamic atomization (EHDA) is a method to jet small amounts of fluid out of a nozzle with a relatively large diameter by switching on and off an electrical field between the nozzle and the substrate. The
total amount of volume deposited is up to 5 pL. The set-up consists of a vertically placed glass pipette with a small nozzle directed downward and a flat substrate placed close to the end of the nozzle. Inside the pipette, an electrode is mounted close to the entrance of the nozzle. The electrode
is connected to a high voltage power amplifier. Upon switching on the electrical field, the apparent surface tension drops, the meniscus deforms into a cone and fluid starts to flow toward the nozzle deforming the meniscus. At a certain moment the cone reaches the Taylor cone dimensions and
from its tip a jet emerges that decomposes into a stream of charged fL droplets that fly toward the substrate. This process stops when the pulse is switched off. After switching off, the meniscus returns slowly to its equilibrium position. The process is controlled by different time constants,
such as the slew rate of the power amplifier and the RC time of the electrical circuit composed of the electrical resistance in the fluid contained in the nozzle between the electrode and the meniscus, and the capacitance of the gap between the meniscus and the flat substrate. Another time
constant deals with the fluid flow during the growth of the meniscus, directly after switching on the pulse. This fluid flow is driven by hydrostatic pressure and opposed by a viscous drag in the nozzle. The final fluid flow during droplet formation is governed by the balance between the drag
of the charge carriers inside the fluid, caused by the current associated with the charged droplets leaving the meniscus and the viscous drag. These different phenomena will be discussed theoretically and compared to experimental results.
期刊介绍:
Typical issues include research papers and/or comprehensive reviews from a variety of topical areas. In the spirit of fostering constructive scientific dialog, the Journal accepts Letters to the Editor commenting on previously published articles. Periodically the Journal features a Special Section containing a group of related— usually invited—papers introduced by a Guest Editor. Imaging research topics that have coverage in JIST include:
Digital fabrication and biofabrication;
Digital printing technologies;
3D imaging: capture, display, and print;
Augmented and virtual reality systems;
Mobile imaging;
Computational and digital photography;
Machine vision and learning;
Data visualization and analysis;
Image and video quality evaluation;
Color image science;
Image archiving, permanence, and security;
Imaging applications including astronomy, medicine, sports, and autonomous vehicles.