J. Lau, C. Ko, C. Peng, Kai-Ming Yang, T. Xia, P. Lin, Jean-Jou Chen, Po-Chun Huang, Tzvy-Jang Tseng, E. Lin, Leo Chang, Curry Lin, Yan-Jun Fan, H. Liu, Winnie Lu
{"title":"面向异构集成的扇出片末级封装热循环测试与仿真","authors":"J. Lau, C. Ko, C. Peng, Kai-Ming Yang, T. Xia, P. Lin, Jean-Jou Chen, Po-Chun Huang, Tzvy-Jang Tseng, E. Lin, Leo Chang, Curry Lin, Yan-Jun Fan, H. Liu, Winnie Lu","doi":"10.4071/imaps.1419800","DOIUrl":null,"url":null,"abstract":"\n In this study, the reliability of the solder joints of a heterogeneous integration of one large chip (10 × 10 mm) and two smaller chips (7 × 5 mm) by a fan-out method with a redistribution layer-first substrate fabricated on a 515 × 510-mm panel is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the heterogeneous integration package on a printed circuit board (PCB). The thermal cycling test results are plotted into a Weibull distribution. The Weibull slope and characteristic life at median rank are presented. At 90% confidence, the true Weibull slope and the true 10% life interval are also provided. A linear acceleration factor is adopted to map the solder joint reliability at the test condition to the solder joint reliability at an operating condition. The failure location and failure mode of the PCB assembly of the heterogeneous integration package are provided and discussed. A nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for the heterogeneous integration PCB assembly and correlated with the thermal cycling test results.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal Cycling Test and Simulation of Fan-Out Chip-Last Panel-Level Packaging for Heterogeneous Integration\",\"authors\":\"J. Lau, C. Ko, C. Peng, Kai-Ming Yang, T. Xia, P. Lin, Jean-Jou Chen, Po-Chun Huang, Tzvy-Jang Tseng, E. Lin, Leo Chang, Curry Lin, Yan-Jun Fan, H. Liu, Winnie Lu\",\"doi\":\"10.4071/imaps.1419800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, the reliability of the solder joints of a heterogeneous integration of one large chip (10 × 10 mm) and two smaller chips (7 × 5 mm) by a fan-out method with a redistribution layer-first substrate fabricated on a 515 × 510-mm panel is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the heterogeneous integration package on a printed circuit board (PCB). The thermal cycling test results are plotted into a Weibull distribution. The Weibull slope and characteristic life at median rank are presented. At 90% confidence, the true Weibull slope and the true 10% life interval are also provided. A linear acceleration factor is adopted to map the solder joint reliability at the test condition to the solder joint reliability at an operating condition. The failure location and failure mode of the PCB assembly of the heterogeneous integration package are provided and discussed. A nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for the heterogeneous integration PCB assembly and correlated with the thermal cycling test results.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.1419800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.1419800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Thermal Cycling Test and Simulation of Fan-Out Chip-Last Panel-Level Packaging for Heterogeneous Integration
In this study, the reliability of the solder joints of a heterogeneous integration of one large chip (10 × 10 mm) and two smaller chips (7 × 5 mm) by a fan-out method with a redistribution layer-first substrate fabricated on a 515 × 510-mm panel is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the heterogeneous integration package on a printed circuit board (PCB). The thermal cycling test results are plotted into a Weibull distribution. The Weibull slope and characteristic life at median rank are presented. At 90% confidence, the true Weibull slope and the true 10% life interval are also provided. A linear acceleration factor is adopted to map the solder joint reliability at the test condition to the solder joint reliability at an operating condition. The failure location and failure mode of the PCB assembly of the heterogeneous integration package are provided and discussed. A nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for the heterogeneous integration PCB assembly and correlated with the thermal cycling test results.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.