{"title":"基于模糊逻辑的工业大棚小气候综合监测与控制信息技术","authors":"I. Laktionov, O. Vovna, M. Kabanets","doi":"10.2478/jaiscr-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, applied computer-oriented and information digitalization technologies are developing very dynamically and are widely used in various industries. One of the highest priority sectors of the economy of Ukraine and other countries around the world, the needs of which require intensive implementation of high-performance information technologies, is agriculture. The purpose of the article is to synthesise scientific and practical provisions to improve the information technology of the comprehensive monitoring and control of microclimate in industrial greenhouses. The object of research is non-stationary processes of aggregation and transformation of measurement data on soil and climatic conditions of the greenhouse microclimate. The subject of research is methods and models of computer-oriented analysis of measurement data on the soil and climatic state of the greenhouse microclimate. The main scientific and practical effect of the article is the development of the theory of intelligent information technologies for monitoring and control of greenhouse microclimate through the development of methods and models of distributed aggregation and intellectualised transformation of measurement data based on fuzzy logic.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"13 1","pages":"19 - 35"},"PeriodicalIF":3.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Information Technology for Comprehensive Monitoring and Control of the Microclimate in Industrial Greenhouses Based on Fuzzy Logic\",\"authors\":\"I. Laktionov, O. Vovna, M. Kabanets\",\"doi\":\"10.2478/jaiscr-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nowadays, applied computer-oriented and information digitalization technologies are developing very dynamically and are widely used in various industries. One of the highest priority sectors of the economy of Ukraine and other countries around the world, the needs of which require intensive implementation of high-performance information technologies, is agriculture. The purpose of the article is to synthesise scientific and practical provisions to improve the information technology of the comprehensive monitoring and control of microclimate in industrial greenhouses. The object of research is non-stationary processes of aggregation and transformation of measurement data on soil and climatic conditions of the greenhouse microclimate. The subject of research is methods and models of computer-oriented analysis of measurement data on the soil and climatic state of the greenhouse microclimate. The main scientific and practical effect of the article is the development of the theory of intelligent information technologies for monitoring and control of greenhouse microclimate through the development of methods and models of distributed aggregation and intellectualised transformation of measurement data based on fuzzy logic.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":\"13 1\",\"pages\":\"19 - 35\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2478/jaiscr-2023-0002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2023-0002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Information Technology for Comprehensive Monitoring and Control of the Microclimate in Industrial Greenhouses Based on Fuzzy Logic
Abstract Nowadays, applied computer-oriented and information digitalization technologies are developing very dynamically and are widely used in various industries. One of the highest priority sectors of the economy of Ukraine and other countries around the world, the needs of which require intensive implementation of high-performance information technologies, is agriculture. The purpose of the article is to synthesise scientific and practical provisions to improve the information technology of the comprehensive monitoring and control of microclimate in industrial greenhouses. The object of research is non-stationary processes of aggregation and transformation of measurement data on soil and climatic conditions of the greenhouse microclimate. The subject of research is methods and models of computer-oriented analysis of measurement data on the soil and climatic state of the greenhouse microclimate. The main scientific and practical effect of the article is the development of the theory of intelligent information technologies for monitoring and control of greenhouse microclimate through the development of methods and models of distributed aggregation and intellectualised transformation of measurement data based on fuzzy logic.
期刊介绍:
Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.