Senthil Kumar Angappan, Tezera Robe, Sisay Muleta, Bekele Worku M
{"title":"基于多目标装箱算法的分布式云资源合理分配","authors":"Senthil Kumar Angappan, Tezera Robe, Sisay Muleta, Bekele Worku M","doi":"10.1108/ijius-05-2021-0032","DOIUrl":null,"url":null,"abstract":"PurposeCloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.Design/methodology/approachThis thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.FindingsThe proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.Originality/valueThe proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed cloud resources allocation for fair utilization using multi-objective bin packing algorithm\",\"authors\":\"Senthil Kumar Angappan, Tezera Robe, Sisay Muleta, Bekele Worku M\",\"doi\":\"10.1108/ijius-05-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeCloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.Design/methodology/approachThis thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.FindingsThe proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.Originality/valueThe proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-05-2021-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-05-2021-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Distributed cloud resources allocation for fair utilization using multi-objective bin packing algorithm
PurposeCloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.Design/methodology/approachThis thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.FindingsThe proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.Originality/valueThe proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.