彩虹之外:高级谱系追踪方法的回顾,用于询问脑肿瘤的发生、进化和复发

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2023-04-04 DOI:10.1159/000530329
Sara Sabet, Joshua J. Breunig
{"title":"彩虹之外:高级谱系追踪方法的回顾,用于询问脑肿瘤的发生、进化和复发","authors":"Sara Sabet, Joshua J. Breunig","doi":"10.1159/000530329","DOIUrl":null,"url":null,"abstract":"The mammalian forebrain is perhaps the pinnacle of evolution and one of the most complex structures in known existence. The origin of this complexity and diversity partly lies in dynamic behavior of progenitors during embryonic neural development, all of which is under the control of regulatory mechanisms that ensure all the elements end up in the right place at the right time. Historically, dye-base, histochemical, enzymatic, or fluorescent lineage tracing techniques have been used deconvolute developmental dynamics in tissues and cells. Technical limitations resulted from a restrictive number of fluorophores, the half-life of the dyes, or the ability to deconvolute mixed population. These limitations often impede larger scale lineage tracing using these methods in spatial and temporal contexts. Genetic barcoding techniques have been used for decades to explore clonal investigations and have now evolved with high-throughput sequencing methods to allow for impressive insights into population and even organism-level lineage relationships. In this review, we will discuss the progression of lineage tracing methodologies and how they are applied to answer questions around molecular and cellular mechanisms of gliogenesis and neurogenesis. We will also discuss recent advances in computational biology, single-cell sequencing, and in situ-based lineage tracing methodologies. Incorporation of these methods into toolset of lineage tracing promise to enable a higher resolution, multimodal view of neural lineages during development and disease processes that highjack developmental signaling such as brain tumor development and recurrence – where traditional developmental hierarchies become more plastic and less predictable. Given the dismal prognosis of high-grade brain tumors like glioblastoma multiforme, a better understanding of the lineage relationships leading to disease heterogeneity and recurrence is desperately needed to formulate efficacious approaches to treatment. Here we discuss a historical foundation on, as well as the future of, lineage tracing at the intersection of development and disease.","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"181 - 190"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Rainbow: A Review of Advanced Lineage Tracing Methodologies for Interrogating the Initiation, Evolution, and Recurrence of Brain Tumors\",\"authors\":\"Sara Sabet, Joshua J. Breunig\",\"doi\":\"10.1159/000530329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mammalian forebrain is perhaps the pinnacle of evolution and one of the most complex structures in known existence. The origin of this complexity and diversity partly lies in dynamic behavior of progenitors during embryonic neural development, all of which is under the control of regulatory mechanisms that ensure all the elements end up in the right place at the right time. Historically, dye-base, histochemical, enzymatic, or fluorescent lineage tracing techniques have been used deconvolute developmental dynamics in tissues and cells. Technical limitations resulted from a restrictive number of fluorophores, the half-life of the dyes, or the ability to deconvolute mixed population. These limitations often impede larger scale lineage tracing using these methods in spatial and temporal contexts. Genetic barcoding techniques have been used for decades to explore clonal investigations and have now evolved with high-throughput sequencing methods to allow for impressive insights into population and even organism-level lineage relationships. In this review, we will discuss the progression of lineage tracing methodologies and how they are applied to answer questions around molecular and cellular mechanisms of gliogenesis and neurogenesis. We will also discuss recent advances in computational biology, single-cell sequencing, and in situ-based lineage tracing methodologies. Incorporation of these methods into toolset of lineage tracing promise to enable a higher resolution, multimodal view of neural lineages during development and disease processes that highjack developmental signaling such as brain tumor development and recurrence – where traditional developmental hierarchies become more plastic and less predictable. Given the dismal prognosis of high-grade brain tumors like glioblastoma multiforme, a better understanding of the lineage relationships leading to disease heterogeneity and recurrence is desperately needed to formulate efficacious approaches to treatment. Here we discuss a historical foundation on, as well as the future of, lineage tracing at the intersection of development and disease.\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\"45 1\",\"pages\":\"181 - 190\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000530329\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的前脑可能是进化的顶峰,也是已知存在的最复杂的结构之一。这种复杂性和多样性的起源部分在于胚胎神经发育过程中祖细胞的动态行为,所有这些都在调节机制的控制下,以确保所有元素在正确的时间出现在正确的位置。历史上,染料基、组织化学、酶促或荧光谱系追踪技术已被用于组织和细胞的去卷积发育动力学。技术限制是由于荧光团的数量有限、染料的半衰期或对混合种群进行去卷积的能力。这些限制往往阻碍在空间和时间背景下使用这些方法进行更大规模的谱系追踪。几十年来,遗传条形码技术一直被用于探索克隆研究,现在已经发展出高通量测序方法,可以深入了解种群甚至生物体水平的谱系关系。在这篇综述中,我们将讨论谱系追踪方法的进展,以及它们如何应用于回答有关胶质发生和神经发生的分子和细胞机制的问题。我们还将讨论计算生物学、单细胞测序和原位谱系追踪方法的最新进展。将这些方法纳入谱系追踪工具集中,有望实现对发育和疾病过程中神经谱系的更高分辨率、多模式视图,从而增强脑肿瘤发展和复发等发育信号——在这些过程中,传统的发育层次变得更具可塑性,更不可预测。鉴于多形性胶质母细胞瘤等高级别脑肿瘤预后不佳,迫切需要更好地了解导致疾病异质性和复发的谱系关系,以制定有效的治疗方法。在这里,我们讨论了在发展和疾病交叉点进行谱系追踪的历史基础以及未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond the Rainbow: A Review of Advanced Lineage Tracing Methodologies for Interrogating the Initiation, Evolution, and Recurrence of Brain Tumors
The mammalian forebrain is perhaps the pinnacle of evolution and one of the most complex structures in known existence. The origin of this complexity and diversity partly lies in dynamic behavior of progenitors during embryonic neural development, all of which is under the control of regulatory mechanisms that ensure all the elements end up in the right place at the right time. Historically, dye-base, histochemical, enzymatic, or fluorescent lineage tracing techniques have been used deconvolute developmental dynamics in tissues and cells. Technical limitations resulted from a restrictive number of fluorophores, the half-life of the dyes, or the ability to deconvolute mixed population. These limitations often impede larger scale lineage tracing using these methods in spatial and temporal contexts. Genetic barcoding techniques have been used for decades to explore clonal investigations and have now evolved with high-throughput sequencing methods to allow for impressive insights into population and even organism-level lineage relationships. In this review, we will discuss the progression of lineage tracing methodologies and how they are applied to answer questions around molecular and cellular mechanisms of gliogenesis and neurogenesis. We will also discuss recent advances in computational biology, single-cell sequencing, and in situ-based lineage tracing methodologies. Incorporation of these methods into toolset of lineage tracing promise to enable a higher resolution, multimodal view of neural lineages during development and disease processes that highjack developmental signaling such as brain tumor development and recurrence – where traditional developmental hierarchies become more plastic and less predictable. Given the dismal prognosis of high-grade brain tumors like glioblastoma multiforme, a better understanding of the lineage relationships leading to disease heterogeneity and recurrence is desperately needed to formulate efficacious approaches to treatment. Here we discuss a historical foundation on, as well as the future of, lineage tracing at the intersection of development and disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1