适用于极端恶劣环境的传感器系统

H. Kappert, S. Schopferer, N. Saeidi, R. Döring, S. Ziesche, A. Olowinsky, Falk Naumann, M. Jägle, M. Spanier, A. Grabmaier
{"title":"适用于极端恶劣环境的传感器系统","authors":"H. Kappert, S. Schopferer, N. Saeidi, R. Döring, S. Ziesche, A. Olowinsky, Falk Naumann, M. Jägle, M. Spanier, A. Grabmaier","doi":"10.4071/001c.57715","DOIUrl":null,"url":null,"abstract":"Sensors are key elements for capturing environmental properties and are today indispensable in the industry for monitoring and control of industrial processes. Many applications are demanding for highly integrated intelligent sensors to meet the requirements on safety, clean, and energy-efficient operation, or to gain process information in the context of industry 4.0. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently, the use of sensor systems is impossible due to the fact that the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical loads do not allow a reliable operation of sensitive electronic components. Eight Fraunhofer Institutes have bundled their competencies and have run the Fraunhofer Lighthouse Project “eHarsh” to overcome this situation. The project goal was to realize sensor systems for extremely harsh environments, whereby sensor systems are more than pure sensors, rather these are containing one or multiple sensing elements and integrated readout electronics. Various technologies, which are necessary for the realization of such sensor systems, have been identified, developed, and finally bundled in a technology platform. These technologies are, e.g., MEMS and ceramic-based sensors, SOI-CMOS-based integrated electronics, board assembly and laser-based joining technologies. All these developments have been accompanied by comprehensive tests, material characterization, and reliability simulations. Based on the platform, a pressure sensor for turbine applications has been realized to prove the performance of the eHarsh technology platform.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensor Systems for Extremely Harsh Environments\",\"authors\":\"H. Kappert, S. Schopferer, N. Saeidi, R. Döring, S. Ziesche, A. Olowinsky, Falk Naumann, M. Jägle, M. Spanier, A. Grabmaier\",\"doi\":\"10.4071/001c.57715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors are key elements for capturing environmental properties and are today indispensable in the industry for monitoring and control of industrial processes. Many applications are demanding for highly integrated intelligent sensors to meet the requirements on safety, clean, and energy-efficient operation, or to gain process information in the context of industry 4.0. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently, the use of sensor systems is impossible due to the fact that the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical loads do not allow a reliable operation of sensitive electronic components. Eight Fraunhofer Institutes have bundled their competencies and have run the Fraunhofer Lighthouse Project “eHarsh” to overcome this situation. The project goal was to realize sensor systems for extremely harsh environments, whereby sensor systems are more than pure sensors, rather these are containing one or multiple sensing elements and integrated readout electronics. Various technologies, which are necessary for the realization of such sensor systems, have been identified, developed, and finally bundled in a technology platform. These technologies are, e.g., MEMS and ceramic-based sensors, SOI-CMOS-based integrated electronics, board assembly and laser-based joining technologies. All these developments have been accompanied by comprehensive tests, material characterization, and reliability simulations. Based on the platform, a pressure sensor for turbine applications has been realized to prove the performance of the eHarsh technology platform.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/001c.57715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/001c.57715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

传感器是捕捉环境属性的关键要素,在当今工业过程的监测和控制中不可或缺。许多应用都需要高度集成的智能传感器,以满足安全、清洁和节能运行的要求,或者在工业4.0的背景下获取过程信息。虽然在许多日常物品中,高度集成的传感器系统已经是最先进的,但在工业环境中的情况显然是不同的。通常,由于工业过程的极端环境条件(如高工作温度或强机械负载)不允许敏感电子元件可靠运行,因此不可能使用传感器系统。八个弗劳恩霍夫研究所整合了他们的能力,并运行了弗劳恩霍夫灯塔项目“eHarsh”来克服这种情况。该项目的目标是实现极端恶劣环境的传感器系统,即传感器系统不仅仅是纯粹的传感器,而是包含一个或多个传感元件和集成读出电子设备。实现这种传感器系统所必需的各种技术已经被确定、开发并最终捆绑在一个技术平台中。这些技术包括基于MEMS和陶瓷的传感器、基于soi - cmos的集成电子、电路板组装和基于激光的连接技术。所有这些发展都伴随着全面的测试、材料表征和可靠性模拟。基于该平台,实现了一个用于涡轮应用的压力传感器,以验证eHarsh技术平台的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Systems for Extremely Harsh Environments
Sensors are key elements for capturing environmental properties and are today indispensable in the industry for monitoring and control of industrial processes. Many applications are demanding for highly integrated intelligent sensors to meet the requirements on safety, clean, and energy-efficient operation, or to gain process information in the context of industry 4.0. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently, the use of sensor systems is impossible due to the fact that the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical loads do not allow a reliable operation of sensitive electronic components. Eight Fraunhofer Institutes have bundled their competencies and have run the Fraunhofer Lighthouse Project “eHarsh” to overcome this situation. The project goal was to realize sensor systems for extremely harsh environments, whereby sensor systems are more than pure sensors, rather these are containing one or multiple sensing elements and integrated readout electronics. Various technologies, which are necessary for the realization of such sensor systems, have been identified, developed, and finally bundled in a technology platform. These technologies are, e.g., MEMS and ceramic-based sensors, SOI-CMOS-based integrated electronics, board assembly and laser-based joining technologies. All these developments have been accompanied by comprehensive tests, material characterization, and reliability simulations. Based on the platform, a pressure sensor for turbine applications has been realized to prove the performance of the eHarsh technology platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
期刊最新文献
Study on the Manufacturability of X Dimension Fan Out Integration Package with Organic RDLs (XDFOI-O) AlGaN High Electron Mobility Transistor for High-Temperature Logic A Novel Approach for Characterizing Epoxy Mold Compound High Temperature Swelling Dual-Band Dual-Polarized Antennas for 5G mmWave Base Stations An Evaluation on the Mechanical and Conductive Performance of Electrically Conductive Film Adhesives with Glass Fabric Carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1