非变换主成分技术对建筑类股票周价格的影响

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2019-07-31 DOI:10.11113/MATEMATIKA.V35.N2.1112
Y. Andu, Muhammad Hisyam Lee, Z. Algamal
{"title":"非变换主成分技术对建筑类股票周价格的影响","authors":"Y. Andu, Muhammad Hisyam Lee, Z. Algamal","doi":"10.11113/MATEMATIKA.V35.N2.1112","DOIUrl":null,"url":null,"abstract":"The fast-growing urbanization has contributed to the construction sector becoming one of the major sectors traded in the world stock market. In general, non-stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a result, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better resultoutcome without the stationarity transformation.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-transformed Principal Component Technique on Weekly Construction Stock Market Price\",\"authors\":\"Y. Andu, Muhammad Hisyam Lee, Z. Algamal\",\"doi\":\"10.11113/MATEMATIKA.V35.N2.1112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast-growing urbanization has contributed to the construction sector becoming one of the major sectors traded in the world stock market. In general, non-stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a result, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better resultoutcome without the stationarity transformation.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V35.N2.1112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

快速增长的城市化促使建筑业成为世界股市的主要交易部门之一。一般来说,非平稳性与大多数股票市场价格模式高度相关。尽管平稳性转换是一种常见的方法,但这可能会导致数据的原创性损失。因此,本研究考虑了使用广义动态主分量(GDPC)的非变换技术。将GDPC与两种变换后的主成分技术进行比较。这与从更大的角度观察这两种技术是相关的。因此,应用了最近一周对来自七个不同国家的九个建筑股票市场价格的两年观察。在进行分析之前,对数据进行了平稳性测试。结果,非变换技术中的均方误差显示出八个最低值。同样,八个建筑股票市场价格的解释方差百分比最高。总之,在没有平稳性变换的情况下,非变换技术也可以呈现更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-transformed Principal Component Technique on Weekly Construction Stock Market Price
The fast-growing urbanization has contributed to the construction sector becoming one of the major sectors traded in the world stock market. In general, non-stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a result, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better resultoutcome without the stationarity transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1