液体助磨剂对白云母干式细磨的影响

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL Physicochemical Problems of Mineral Processing Pub Date : 2023-05-04 DOI:10.37190/ppmp/165854
V. Bozkurt, S. Çayirli, Serkan Gokcen, Y. Ucbas
{"title":"液体助磨剂对白云母干式细磨的影响","authors":"V. Bozkurt, S. Çayirli, Serkan Gokcen, Y. Ucbas","doi":"10.37190/ppmp/165854","DOIUrl":null,"url":null,"abstract":"This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of liquid grinding aids on the dry fine grinding of muscovite\",\"authors\":\"V. Bozkurt, S. Çayirli, Serkan Gokcen, Y. Ucbas\",\"doi\":\"10.37190/ppmp/165854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/165854\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/165854","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在实验室规模的立式搅拌球磨机中,通过干磨工艺,以最低能耗生产出符合涂料行业产品要求的微粉化白云母,目标产品尺寸为d50~15µm。在不使用和使用两种常用的工业液体研磨助剂乙二醇(EG,C2H6O2)和三乙醇胺(TEA,C6H15NO3)的情况下进行了一系列分批干研磨试验。根据粒度分布(PSD)、比能耗、跨度值和长径比对结果进行评估。结果表明,与无助磨剂相比,使用液体助磨剂可获得更细的PSD、更低的比能耗、更窄的尺寸分布、更低的跨度值和更高的纵横比,这意味着更好的分层和提高的研磨效率。用傅立叶变换红外光谱(FTIR)研究了助磨剂与白云母表面的相互作用。FTIR测试表明EG和TEA在白云母表面被物理吸附。扫描电子显微镜(SEM)也被用于确定有助磨剂和没有助磨剂的研磨白云母表面之间的差异。SEM图像表明,助磨剂可以防止磨碎的白云母颗粒团聚,同时改善分层。由于助磨剂在颗粒表面的吸附,添加助磨剂导致白云母团聚的减少和层压的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of liquid grinding aids on the dry fine grinding of muscovite
This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
期刊最新文献
Studying on mineralogical and petrological characteristics of Gara Djebilet oolitic iron ore, Tindouf (Algeria) Optimization of flotation conditions in the beneficiation of PGMs tailings On the selection of the coarsest size class in flotation rate characterizations Biochars from wood biomass as effective methylene blue adsorbents Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1