不确定条件下氢气回收变压吸附装置的优化设计

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-05-04 DOI:10.1515/cppm-2022-0081
O. Golubyatnikov, E. Akulinin, S. Dvoretsky
{"title":"不确定条件下氢气回收变压吸附装置的优化设计","authors":"O. Golubyatnikov, E. Akulinin, S. Dvoretsky","doi":"10.1515/cppm-2022-0081","DOIUrl":null,"url":null,"abstract":"Abstract The paper proposes an approach to the optimal design of pressure swing adsorption (PSA) units for hydrogen recovery under uncertainty, which provides a reasonable margin of the potential resource of the PSA hydrogen unit and compensates for the negative impact of a random change in uncertain parameters within specified limits. A heuristic iterative algorithm is proposed to solve the design problem with a profit criterion, which is guaranteed to provide the technological requirements for the PSA unit, regardless of the values that take uncertain parameters from the specified intervals of their possible change. An experimental verification of the approach with the root-mean-square error of 19.43 % has been carried out. Optimization problems of searching for a combination of mode and design parameters under uncertainty for a range of 4-bed 4-step VPSA units with a capacity of 100–2000 L/min STP have been solved taking into account the requirements for hydrogen purity of 99.99+ %, gas inlet velocity of 0.2 m/s, and bed pressure drop (no more than 1 atm). It has been established that taking into account uncertainties leads to an increase in energy costs by 8–10 %, a decrease in profit by 10–15 %, and a decrease in hydrogen recovery by 4–5 %, which is a payment for the uninterrupted operation of the PSA unit. The effect of uncertain parameters (percentage composition of the gas mixture; gas temperature; the diameter of adsorbent particles) on the key indicators of the PSA process (recovery, profit, hydrogen purity, unit capacity) has been established and trends in adsorption duration, adsorption and desorption pressure, P/F ratio, valve capacity, bed length, adsorber diameter for design of hydrogen PSA unit, which are necessary for subsequent design and scaling of units.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty\",\"authors\":\"O. Golubyatnikov, E. Akulinin, S. Dvoretsky\",\"doi\":\"10.1515/cppm-2022-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper proposes an approach to the optimal design of pressure swing adsorption (PSA) units for hydrogen recovery under uncertainty, which provides a reasonable margin of the potential resource of the PSA hydrogen unit and compensates for the negative impact of a random change in uncertain parameters within specified limits. A heuristic iterative algorithm is proposed to solve the design problem with a profit criterion, which is guaranteed to provide the technological requirements for the PSA unit, regardless of the values that take uncertain parameters from the specified intervals of their possible change. An experimental verification of the approach with the root-mean-square error of 19.43 % has been carried out. Optimization problems of searching for a combination of mode and design parameters under uncertainty for a range of 4-bed 4-step VPSA units with a capacity of 100–2000 L/min STP have been solved taking into account the requirements for hydrogen purity of 99.99+ %, gas inlet velocity of 0.2 m/s, and bed pressure drop (no more than 1 atm). It has been established that taking into account uncertainties leads to an increase in energy costs by 8–10 %, a decrease in profit by 10–15 %, and a decrease in hydrogen recovery by 4–5 %, which is a payment for the uninterrupted operation of the PSA unit. The effect of uncertain parameters (percentage composition of the gas mixture; gas temperature; the diameter of adsorbent particles) on the key indicators of the PSA process (recovery, profit, hydrogen purity, unit capacity) has been established and trends in adsorption duration, adsorption and desorption pressure, P/F ratio, valve capacity, bed length, adsorber diameter for design of hydrogen PSA unit, which are necessary for subsequent design and scaling of units.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种在不确定条件下用于氢气回收的变压吸附装置的优化设计方法,该方法为变压吸附氢气装置的潜在资源提供了合理的裕度,并补偿了不确定参数在规定范围内随机变化的负面影响。提出了一种启发式迭代算法来解决具有利润准则的设计问题,该算法保证为PSA装置提供技术要求,而不管从其可能变化的指定间隔中取不确定参数的值如何。均方根误差为19.43的方法的实验验证 % 已执行。容量为100–2000的4床4步VPSA单元在不确定条件下搜索模式和设计参数组合的优化问题 考虑到氢气纯度为99.99的要求,已解决了L/min STP+ %, 进气速度为0.2 m/s,床层压降(不超过1 atm)。已经确定,考虑到不确定性会导致能源成本增加8-10 %, 利润减少10-15 %, 氢气回收率降低4–5 %, 这是对PSA单元的不间断操作的支付。已经确定了不确定参数(气体混合物的百分比组成;气体温度;吸附剂颗粒的直径)对PSA工艺关键指标(回收率、利润、氢气纯度、单位容量)的影响,以及吸附持续时间、吸附和解吸压力、P/F比、阀容量、床层长度、,用于氢气PSA装置设计的吸附器直径,这是后续装置设计和规模化所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty
Abstract The paper proposes an approach to the optimal design of pressure swing adsorption (PSA) units for hydrogen recovery under uncertainty, which provides a reasonable margin of the potential resource of the PSA hydrogen unit and compensates for the negative impact of a random change in uncertain parameters within specified limits. A heuristic iterative algorithm is proposed to solve the design problem with a profit criterion, which is guaranteed to provide the technological requirements for the PSA unit, regardless of the values that take uncertain parameters from the specified intervals of their possible change. An experimental verification of the approach with the root-mean-square error of 19.43 % has been carried out. Optimization problems of searching for a combination of mode and design parameters under uncertainty for a range of 4-bed 4-step VPSA units with a capacity of 100–2000 L/min STP have been solved taking into account the requirements for hydrogen purity of 99.99+ %, gas inlet velocity of 0.2 m/s, and bed pressure drop (no more than 1 atm). It has been established that taking into account uncertainties leads to an increase in energy costs by 8–10 %, a decrease in profit by 10–15 %, and a decrease in hydrogen recovery by 4–5 %, which is a payment for the uninterrupted operation of the PSA unit. The effect of uncertain parameters (percentage composition of the gas mixture; gas temperature; the diameter of adsorbent particles) on the key indicators of the PSA process (recovery, profit, hydrogen purity, unit capacity) has been established and trends in adsorption duration, adsorption and desorption pressure, P/F ratio, valve capacity, bed length, adsorber diameter for design of hydrogen PSA unit, which are necessary for subsequent design and scaling of units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1