无铅BaTiO3-Bi(Mg1/2Sn1/2)O3体相铁电体优异的储能性能、畴机制和温度稳定性

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2023-04-24 DOI:10.1063/5.0137616
Dan Qie, Zhen-hua Tang, Junlin Fang, Dijie Yao, Li Zhang, Yan-ping Jiang, Qi Sun, Dan Zhang, Jing Fan, Xin-gui Tang, Qiu-Xiang Liu, Y. Zhou
{"title":"无铅BaTiO3-Bi(Mg1/2Sn1/2)O3体相铁电体优异的储能性能、畴机制和温度稳定性","authors":"Dan Qie, Zhen-hua Tang, Junlin Fang, Dijie Yao, Li Zhang, Yan-ping Jiang, Qi Sun, Dan Zhang, Jing Fan, Xin-gui Tang, Qiu-Xiang Liu, Y. Zhou","doi":"10.1063/5.0137616","DOIUrl":null,"url":null,"abstract":"Pulsed power systems require high-performance capacitors with high energy storage density. In this work, (1 − x)BaTiO3-xBi(Mg1/2Sn1/2)O3 ferroelectric ceramics were synthesized in a solid-state solution. The sample of x = 0.12 (0.88BT-0.12BMS) has excellent energy storage density, wide temperature, and wide frequency stability. The excellent energy density of 4.87 J/cm3 at 315 kV/cm and the energy efficiency of 72% at room temperature for 0.88BT-0.12BMS ceramics were achieved. Furthermore, the 0.88BT-0.12BMS ceramics demonstrated well temperature stabilities in the range of 20–100 °C and very good frequency stability in the range of 1–100 Hz. Through pulsed charging–discharging testing, the current density is calculated as 314.01 A/cm2, and the power density is 21.98 MW/cm3. Moreover, the oxygen vacancies' defects and ferroelectric domain mechanism for enhanced breakdown strength as well as high energy density were discussed. These findings broaden the horizon for lead-free dielectrics and show promising applications for pulse power capacitors.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Excellent energy storage properties, domain mechanism, and temperature stability of lead-free BaTiO3-Bi(Mg1/2Sn1/2)O3 bulk ferroelectrics\",\"authors\":\"Dan Qie, Zhen-hua Tang, Junlin Fang, Dijie Yao, Li Zhang, Yan-ping Jiang, Qi Sun, Dan Zhang, Jing Fan, Xin-gui Tang, Qiu-Xiang Liu, Y. Zhou\",\"doi\":\"10.1063/5.0137616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed power systems require high-performance capacitors with high energy storage density. In this work, (1 − x)BaTiO3-xBi(Mg1/2Sn1/2)O3 ferroelectric ceramics were synthesized in a solid-state solution. The sample of x = 0.12 (0.88BT-0.12BMS) has excellent energy storage density, wide temperature, and wide frequency stability. The excellent energy density of 4.87 J/cm3 at 315 kV/cm and the energy efficiency of 72% at room temperature for 0.88BT-0.12BMS ceramics were achieved. Furthermore, the 0.88BT-0.12BMS ceramics demonstrated well temperature stabilities in the range of 20–100 °C and very good frequency stability in the range of 1–100 Hz. Through pulsed charging–discharging testing, the current density is calculated as 314.01 A/cm2, and the power density is 21.98 MW/cm3. Moreover, the oxygen vacancies' defects and ferroelectric domain mechanism for enhanced breakdown strength as well as high energy density were discussed. These findings broaden the horizon for lead-free dielectrics and show promising applications for pulse power capacitors.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0137616\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0137616","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

脉冲功率系统需要具有高能量存储密度的高性能电容器。本工作在固态溶液中合成了(1−x)BaTiO3-xBi(Mg1/2Sn1/2)O3铁电陶瓷。x的样本 = 0.12(0.88BT-0.12BMS)具有优异的储能密度、宽温度和宽频率稳定性。4.87的优异能量密度 315时J/cm3 对于0.88BT-0.12BMS陶瓷,在室温下获得了72%的能量效率。此外,0.88BT-0.12BMS陶瓷在20–100范围内表现出良好的温度稳定性 °C,在1–100范围内具有非常好的频率稳定性 赫兹。通过脉冲充放电测试,计算出电流密度为314.01 A/cm2,功率密度为21.98 此外,还讨论了氧空位的缺陷以及提高击穿强度和高能量密度的铁电畴机制。这些发现拓宽了无铅电介质的前景,并在脉冲功率电容器中显示出有前景的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excellent energy storage properties, domain mechanism, and temperature stability of lead-free BaTiO3-Bi(Mg1/2Sn1/2)O3 bulk ferroelectrics
Pulsed power systems require high-performance capacitors with high energy storage density. In this work, (1 − x)BaTiO3-xBi(Mg1/2Sn1/2)O3 ferroelectric ceramics were synthesized in a solid-state solution. The sample of x = 0.12 (0.88BT-0.12BMS) has excellent energy storage density, wide temperature, and wide frequency stability. The excellent energy density of 4.87 J/cm3 at 315 kV/cm and the energy efficiency of 72% at room temperature for 0.88BT-0.12BMS ceramics were achieved. Furthermore, the 0.88BT-0.12BMS ceramics demonstrated well temperature stabilities in the range of 20–100 °C and very good frequency stability in the range of 1–100 Hz. Through pulsed charging–discharging testing, the current density is calculated as 314.01 A/cm2, and the power density is 21.98 MW/cm3. Moreover, the oxygen vacancies' defects and ferroelectric domain mechanism for enhanced breakdown strength as well as high energy density were discussed. These findings broaden the horizon for lead-free dielectrics and show promising applications for pulse power capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Robust biomimetic strain sensor based on butterfly wing-derived skeleton structure Neural network–enabled, all-electronic control of non-Newtonian fluid flow Experimental implementation of time reversal in an optical domain Spin Hall effect in platinum deposited by atomic layer deposition Optimization of the dielectric layer parameters through coupled numerical analysis to enhance droplet and particle manipulation in digital microfluidic chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1