{"title":"改性二氧化锰阳极对盐酸多西环素电解效果的影响","authors":"Feng Ye, Jianhua Wang, Jiqing Bao","doi":"10.1007/s12678-022-00796-6","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively degrade antibiotics, a series of MnO<sub>2</sub> modified electrodes were prepared by using a thermal decomposition method in this study. The corrosion resistance of the coated electrodes was evaluated by characterizing the microscopic morphology of the electrodes using scanning electron microscopy (SEM). Moreover, electrochemical tests, including cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves, as well as alternating-current (AC) electrochemical impedance spectroscopy (EIS), were applied to study the electrocatalytic ability of the electrode for the degradation of doxycycline hydrochloride in simulated wastewater. Based on the findings, the MnO<sub>2</sub>/CuO-mesoporous silica (SBA)-15 electrode displayed a long lifetime and excellent catalytic performance. The peroxynitrite (PMS) was further combined with above electrodes to construct an electrocatalytic oxidation (EC) system for the removing of doxycycline hydrochloride from wastewater. Under optimized conditions (current density of 30 mA/cm<sup>2</sup>, initial pH of 5, PMS dosing of 350 mg/L), the MnO<sub>2</sub>/CuO-SBA-15/PMS system can remove 79.44% doxycycline hydrochloride (initial concentration of 20 mg/L) after 180 min of electrolysis, 24.71% higher than that in the MnO<sub>2</sub>/PMS system.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 2","pages":"315 - 324"},"PeriodicalIF":2.7000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00796-6.pdf","citationCount":"1","resultStr":"{\"title\":\"Effect of Modified MnO2 Anodes on the Electrolytic Effect of Doxycycline Hydrochloride\",\"authors\":\"Feng Ye, Jianhua Wang, Jiqing Bao\",\"doi\":\"10.1007/s12678-022-00796-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To effectively degrade antibiotics, a series of MnO<sub>2</sub> modified electrodes were prepared by using a thermal decomposition method in this study. The corrosion resistance of the coated electrodes was evaluated by characterizing the microscopic morphology of the electrodes using scanning electron microscopy (SEM). Moreover, electrochemical tests, including cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves, as well as alternating-current (AC) electrochemical impedance spectroscopy (EIS), were applied to study the electrocatalytic ability of the electrode for the degradation of doxycycline hydrochloride in simulated wastewater. Based on the findings, the MnO<sub>2</sub>/CuO-mesoporous silica (SBA)-15 electrode displayed a long lifetime and excellent catalytic performance. The peroxynitrite (PMS) was further combined with above electrodes to construct an electrocatalytic oxidation (EC) system for the removing of doxycycline hydrochloride from wastewater. Under optimized conditions (current density of 30 mA/cm<sup>2</sup>, initial pH of 5, PMS dosing of 350 mg/L), the MnO<sub>2</sub>/CuO-SBA-15/PMS system can remove 79.44% doxycycline hydrochloride (initial concentration of 20 mg/L) after 180 min of electrolysis, 24.71% higher than that in the MnO<sub>2</sub>/PMS system.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"14 2\",\"pages\":\"315 - 324\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12678-022-00796-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-022-00796-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-022-00796-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of Modified MnO2 Anodes on the Electrolytic Effect of Doxycycline Hydrochloride
To effectively degrade antibiotics, a series of MnO2 modified electrodes were prepared by using a thermal decomposition method in this study. The corrosion resistance of the coated electrodes was evaluated by characterizing the microscopic morphology of the electrodes using scanning electron microscopy (SEM). Moreover, electrochemical tests, including cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves, as well as alternating-current (AC) electrochemical impedance spectroscopy (EIS), were applied to study the electrocatalytic ability of the electrode for the degradation of doxycycline hydrochloride in simulated wastewater. Based on the findings, the MnO2/CuO-mesoporous silica (SBA)-15 electrode displayed a long lifetime and excellent catalytic performance. The peroxynitrite (PMS) was further combined with above electrodes to construct an electrocatalytic oxidation (EC) system for the removing of doxycycline hydrochloride from wastewater. Under optimized conditions (current density of 30 mA/cm2, initial pH of 5, PMS dosing of 350 mg/L), the MnO2/CuO-SBA-15/PMS system can remove 79.44% doxycycline hydrochloride (initial concentration of 20 mg/L) after 180 min of electrolysis, 24.71% higher than that in the MnO2/PMS system.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.