讨论:“分布式统计推断综述”

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-12-28 DOI:10.1080/24754269.2021.2015868
Shaogao Lv, Xingcai Zhou
{"title":"讨论:“分布式统计推断综述”","authors":"Shaogao Lv, Xingcai Zhou","doi":"10.1080/24754269.2021.2015868","DOIUrl":null,"url":null,"abstract":"First of all, we would like to congratulate Dr Gao et al. for their excellent paper, which provides a comprehensive overview of amounts of existing work on distributed estimation (learning). Different from related work Gu et al. (2019); Liu et al. (2021); Verbraeken et al. (2020) that focus on computing, storage and communication architecture, the current paper leverages how to guarantee statistical efficiency of a given distributed method from a statistical viewpoint. In the following, we divide our discussion into three parts:","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"105 - 107"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussion of: ‘A review of distributed statistical inference’\",\"authors\":\"Shaogao Lv, Xingcai Zhou\",\"doi\":\"10.1080/24754269.2021.2015868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First of all, we would like to congratulate Dr Gao et al. for their excellent paper, which provides a comprehensive overview of amounts of existing work on distributed estimation (learning). Different from related work Gu et al. (2019); Liu et al. (2021); Verbraeken et al. (2020) that focus on computing, storage and communication architecture, the current paper leverages how to guarantee statistical efficiency of a given distributed method from a statistical viewpoint. In the following, we divide our discussion into three parts:\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"105 - 107\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2021.2015868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.2015868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

首先,我们要祝贺高博士等人的出色论文,该论文全面概述了分布式估计(学习)方面的现有工作。与相关工作不同,顾等人(2019);刘等(2021);Verbraeken等人(2020)专注于计算、存储和通信架构,当前的论文利用了如何从统计角度保证给定分布式方法的统计效率。在下文中,我们将讨论分为三个部分:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussion of: ‘A review of distributed statistical inference’
First of all, we would like to congratulate Dr Gao et al. for their excellent paper, which provides a comprehensive overview of amounts of existing work on distributed estimation (learning). Different from related work Gu et al. (2019); Liu et al. (2021); Verbraeken et al. (2020) that focus on computing, storage and communication architecture, the current paper leverages how to guarantee statistical efficiency of a given distributed method from a statistical viewpoint. In the following, we divide our discussion into three parts:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1